Publications by authors named "Mohd Asalam"

Sacchromycescerevisiae Peptidyl-prolylcis/trans-isomerase Rrd1 has been linked to DNA repair, bud morphogenesis, advancement of the G1 phase, DNA replication stress, microtubule dynamics and is also necessary for the quick decrease in Sgs1p levels in response to rapamycin. In present study, Rrd1 gene was amplified by standard PCR and subsequently cloned downstream to bacteriophage T7 inducible promoter and lac operator of expression vector pET21d(+). Additionally, immobilized metal affinity chromatography (IMAC) was used to purify the protein upto its homogeneity, and its homogeneous purity was further confirmed through western blotting.

View Article and Find Full Text PDF

The largest subunit of RNAPII extends as the conserved unstructured heptapeptide consensus repeats YSPTSPS and their posttranslational modification, especially the phosphorylation state at Ser2, Ser5 and Ser7 of CTD recruits different transcription factors involved in transcription. In the current study, fluorescence anisotropy, pull down assay and molecular dynamics simulation studies employed to conclude that peptidyl-prolyl cis/trans-isomerase Rrd1 has strong affinity for unphosphorylated CTD rather than phosphorylated CTD for mRNA transcription. Rrd1 preferentially interacts with unphosphorylated GST-CTD in comparison to hyperphosphorylated GST-CTD in vitro.

View Article and Find Full Text PDF

The mRNA turnover and ribosome assembly are facilitated by Mrt4 protein from . In present study, we are reporting the cloning, expression and homogeneous purification of recombinant Mrt4. Mrt4 is a 236-amino-acid-long nuclear protein that plays a very crucial role in mRNA turnover and ribosome assembly during the translation process.

View Article and Find Full Text PDF

The epigenetic phenomenon is known to derive the phenotypic variation of an organism through an interconnected cellular network of histone modifications, DNA methylation and RNA regulatory network. Transcription for protein coding genes is a highly regulated process and carried out by a large multi-complex RNA Polymerase II. The carboxy terminal domain (CTD) of the largest subunit of RNA Polymerase II consists of a conserved and highly repetitive heptad sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser.

View Article and Find Full Text PDF

In eukaryotes, the basal transcription in interphase is orchestrated through the regulation by kinases (Kin28, Bur1, and Ctk1) and phosphatases (Ssu72, Rtr1, and Fcp1), which act through the post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD comprises the repeated Tyr-Ser-Pro-Thr-Ser-Pro-Ser motif with potential epigenetic modification sites. Despite the observation of transcription and periodic expression of genes during mitosis with entailing CTD phosphorylation and dephosphorylation, the associated CTD specific kinase(s) and its role in transcription remains unknown.

View Article and Find Full Text PDF