Publications by authors named "Moharamzadeh K"

Background And Aim: Recent studies have shown that electronic cigarettes (ECs) use disrupts the oral microbiome composition and diversity, impairing the metabolic pathways of the mucosal cells. However, to date, no reports have evaluated the role of EC exposure in the context of oral metabolome. Hence, the aim of this study was to investigate the role of EC aerosol exposure in the dysregulation of the oral microbiome and metabolome profile using in vitro 3D organotypic models of human oral mucosa.

View Article and Find Full Text PDF

Background: Tissue engineering has significantly progressed in developing full-thickness oral mucosa constructs designed to replicate the natural oral mucosa. These constructs serve as valuable in vitro models for biocompatibility testing and oral disease modeling and hold clinical potential for replacing damaged or lost oral soft tissue. However, one of the major challenges in tissue engineering of the oral mucosa is the identification of an appropriate scaffold with optimal porosity, interconnected porous networks, biodegradability, and biocompatibility.

View Article and Find Full Text PDF

Introduction And Aims: Violations of the mandibular canal (MC) and mental foramen (MF) and subsequent injuries to their neurovascular bundle have been reported after surgical and nonsurgical dental procedures. Besides using advanced technologies such as cone-beam computed tomography (CBCT), clinicians should be aware of the anatomy and location of MC and MF in different populations. This study aims to describe the morphologic characteristics of the MF, MC, and its intrabony location in relation to the apices of mandibular posterior teeth in an Emirati subpopulation using CBCT.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate and visualize the anti-inflammatory and anti-bacterial effects of different oral care products using an infected and inflamed 3D tissue-engineered gingival mucosal model.

Methods: A 3D full-thickness oral mucosal model was engineered inside tissue culture inserts using collagen hydrogels populated with human gingival fibroblasts and THP-1 monocytes and layered with oral epithelial cell lines. Oral saliva bacteria were cultured and added to the surface of the models and inflammation was further simulated with lipopolysaccharide (LPS) of .

View Article and Find Full Text PDF

The aim of the study was to evaluate the effect of various silane coupling agents on the micro-push-out bond strength between a hydrogen peroxide-etched epoxy-based fiber-reinforced post and composite resin core. Seventy-five cross-linked epoxy-based fiber-reinforced posts were etched with 24% hydrogen peroxide for 10 min. Then they were divided into five groups according to various silane coupling agents and bonded to a composite core.

View Article and Find Full Text PDF

Background: Recording accurate impressions from maxillary defects is a critical and challenging stage in the prosthetic rehabilitation of patients following maxillectomy surgery. The aim of this study was to develop and optimize conventional and 3D-printed laboratory models of maxillary defects and to compare conventional and digital impression techniques using these models.

Methods: Six different types of maxillary defect models were fabricated.

View Article and Find Full Text PDF

Electronic cigarette (EC) usage or vaping has seen a significant rise in recent years across various parts of the world. They have been publicized as a safe alternative to smoking; however, this is not supported strongly by robust research evidence. Toxicological analysis of EC liquid and aerosol has revealed presence of several toxicants with known carcinogenicity.

View Article and Find Full Text PDF

Revolutionary fabrication technologies such as three-dimensional (3D) printing to develop dental structures are expected to replace traditional methods due to their ability to establish constructs with the required mechanical properties and detailed structures. Three-dimensional printing, as an additive manufacturing approach, has the potential to rapidly fabricate complex dental prostheses by employing a bottom-up strategy in a layer-by-layer fashion. This new technology allows dentists to extend their degree of freedom in selecting, creating, and performing the required treatments.

View Article and Find Full Text PDF

Introduction: Natural decellularized patches have been developed as the therapeutic platform for the treatment of different diseases, especially cardiovascular disorders. Decellularized scaffolds (as both cell-seeded and cell-free patches) are broadly studied in heart tissue redevelopment in vivo and in vitro. The designed regenerative bio-scaffold must have desirable physicochemical properties including mechanical stiffness for load-bearing, and appropriate anatomical characteristics to mimic the native biological environment properly and facilitate tissue reconstruction.

View Article and Find Full Text PDF

Purpose: The purpose of this questionnaire-based service evaluation was to assess patient satisfaction with complete dentures provided in a dental teaching hospital.

Methods: Patients completed the self-administered questionnaire before, immediately after, and 2-months following provision of new complete dentures. The questionnaire consisted of the following sections: Patient characteristics, current denture history and satisfaction with the fit of upper/lower complete dentures, chewing ability, speech, and aesthetics.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create a tooth wear classification system that evaluates the extent, severity, and aesthetic impact of tooth wear to guide clinical management.
  • Using 300 photographs, researchers developed a four-level classification system, which ten examiners used to assess cases and recommend treatment options.
  • Results showed strong agreement among examiners on severity and aesthetic impact, suggesting that minor cases need simple interventions, while moderate and severe cases may require more complex treatments.
View Article and Find Full Text PDF

In the past decade, microneedle-based drug delivery systems showed promising approaches to become suitable and alternative for hypodermic injections and can control agent delivery without side effects compared to conventional approaches. Despite these advantages, the procedure of microfabrication is facing some difficulties. For instance, drug loading method, stability of drugs, and retention time are subjects of debate.

View Article and Find Full Text PDF

Objectives: The aim of this work was to combine engineered hard and soft tissue, adopting a new method for interfacial adhesion of osteo-mucosal construct. We hypothesized that the chemical procedure involved in this method not only adheres the components, but also improves the cell growth inside them.

Methods: 3D-printed functionally-graded porous hard-tissue scaffolds were characterized, functionalized by aminolysis and tyrosinase, and accommodated by human osteoblast cells.

View Article and Find Full Text PDF

Unlabelled: Clinical applications of resin-based composite (RBC) generate environmental pollution in the form of microparticulate waste.

Methods: SEM, particle size and specific surface area analysis, FT-IR and potentiometric titrations were used to characterise microparticles arising from grinding commercial and control RBCs as a function of time, at time of generation and after 12 months ageing in water. The RBCs were tested in two states: (i) direct-placement materials polymerised to simulate routine clinical use and (ii) pre-polymerised CAD/CAM ingots milled using CAD/CAM technology.

View Article and Find Full Text PDF

The tumor microenvironment (TME) of oral carcinomas has highly complex contents and a dynamic nature which is difficult to study using oversimplified two-dimensional (2D) cell culture systems. By contrast, three dimensional (3D) models such as spheroids, organoids, and scaffold-based constructs have been able to replicate tumors three-dimensionality and have allowed a better understanding of the role of various microenvironmental cues in the initiation and progression of cancer. However, the heterogeneity of TME cannot be fully reproduced by these traditional tissue engineering strategies since they are unable to control the organization of multiple cell types in a complex architecture.

View Article and Find Full Text PDF

Horseradish peroxidase (HRP)-catalyzed hydrogels are considered to be an important platform for tissue engineering applications. In this study, we investigated the chondrogenic capacity of phenolated (1.2%) alginate-(0.

View Article and Find Full Text PDF

As resin-based composites (RBC) replace dental amalgam for environmental reasons, there is a requirement to understand the environmental impact of this alternative dental restorative material. In this study we standardize the simultaneous detection of five monomeric components associated with RBCs using high performance liquid chromatography (HPLC) coupled with solid-phase microextraction (SPME). Factors affecting method performance (detection wavelength, calibration conditions, method sensitivity/accuracy/precision, extraction time/efficiency) are evaluated using standard solutions containing the mixture of TEGDMA, UDMA, Bis-GMA, BPA and HEMA.

View Article and Find Full Text PDF

The use of radiographic indices is noticeably diminished due to the lack of simplicity and standardisation among the existing ones. The aim of this study was to introduce a radiographic index to aid clinicians in determining the extent and severity of interproximal alveolar bone loss (iABL), in relation to individual root lengths, among patients suffering from periodontitis. A retrospective analysis of 50 anonymised dental panoramic tomograms (DPTs) of patients with periodontitis was conducted.

View Article and Find Full Text PDF

The homeostasis of osteochondral tissue is tightly controlled by articular cartilage chondrocytes and underlying subchondral bone osteoblasts via different internal and external clues. As a correlate, the osteochondral region is frequently exposed to physical forces and mechanical pressure. On this basis, distinct sets of substrates and physicochemical properties of the surrounding matrix affect the regeneration capacity of chondrocytes and osteoblasts.

View Article and Find Full Text PDF

Purpose: Over the past decades, a variety of biomaterials have been investigated in terms of their suitability for oral mucosa tissue engineering. The aim of this study was to compare collagen and GelMA hydrogels as connective tissue scaffolds for fibroblasts and as substrates for seeding and culture of oral epithelial keratinocyte cells.

Methods: Human primary oral fibroblast and keratinocyte cells were isolated from gingival biopsies.

View Article and Find Full Text PDF

Purpose: The aim of this study was to investigate soft-tissue attachment to different metal, ceramic, and polymer implant surfaces using an inflamed, three-dimensional (3D), tissue-engineered, human oral mucosal model, as well as multiple-endpoint qualitative and quantitative biological approaches.

Methods: Normal human oral fibroblasts, OKF6/TERT-2 keratinocytes and THP-1 monocytes were cultured, and full-thickness, 3D oral mucosal models were engineered inside tissue culture inserts. Sand-blasted and acid-etched (SLA) and machined (M) titanium-zirconium alloy (TiZr; commercially known as Roxolid; Institut Straumann AG, Switzerland), ceramic (ZrO), and polyether ether ketone (PEEK) rods (Ø 4 mm × 8 mm) were inserted into the center of tissue-engineered oral mucosa following a Ø 4mm punch biopsy.

View Article and Find Full Text PDF

Background: Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing.

View Article and Find Full Text PDF

The novel coronavirus (COVID-19) pandemic has become a real challenge for healthcare providers around the world and has significantly affected the dental professionals in practices, universities and research institutions. The aim of this article was to review the available literature on the relevant aspects of dentistry in relation to COVID-19 and to discuss potential impacts of COVID-19 outbreak on clinical dentistry, dental education and research. Although the coronavirus pandemic has caused many difficulties for provision of clinical dentistry, there would be an opportunity for the dental educators to modernize their teaching approaches using novel digital concepts in teaching of clinical skills and by enhancement of online communication and learning platforms.

View Article and Find Full Text PDF

Oral mucosa is the target tissue for many microorganisms involved in periodontitis and other infectious diseases affecting the oral cavity. Three-dimensional (3D) and oral mucosa equivalents have been used for oral disease modeling and investigation of the mechanisms of oral bacterial and fungal infections. This review was conducted to analyze different studies using 3D oral mucosa models for the evaluation of the interactions of different microorganisms with oral mucosa.

View Article and Find Full Text PDF

Background: There is limited data available on potential biological effects of E-cigarettes on human oral tissues. The aim of this study was to evaluate the effects of E-cigarette liquid on the proliferation of normal and cancerous monolayer and 3D models of human oral mucosa and oral wound healing after short-term and medium-term exposure.

Methods: Normal human oral fibroblasts (NOF), immortalized OKF6-TERET-2 human oral keratinocytes, and cancerous TR146 keratinocyte monolayer cultures and 3D tissue engineered oral mucosal models were exposed to different concentrations (0.

View Article and Find Full Text PDF