Publications by authors named "Mohanraj Vinothkannan"

Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative.

View Article and Find Full Text PDF

The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting approach to create a potential composite membrane for PEMFC applications. Thermal stability of membranes was observed using thermogravimetric analysis (TGA), and the SPAE/GO/PWA membranes exhibited high thermal stability compared to pristine SPAE membranes, owing to the interaction between SPAEK, GO, and PWA.

View Article and Find Full Text PDF

We designed and synthesized a series of sulfonated poly(arylene ether sulfone) (SPES) with different hydrophilic or hydrophobic oligomer ratios using poly-condensation strategy. Afterward, we fabricated the corresponding membranes via a solution-casting approach. We verified the SPES membrane chemical structure using nuclear magnetic resonance (H NMR) and confirmed the resulting oligomer ratio.

View Article and Find Full Text PDF

The anion exchange membrane may have different physical and chemical properties, electrochemical performance and mechanical stability depending upon the monomer structure, hydrophilicity and hydrophobic repeating unit, surface form and degree of substitution of functional groups. In current work, poly(arylene ether sulfone) (PAES) block copolymer was created and used as the main chain. After controlling the amount of NBS, the degree of bromination (DB) was changed in Br-PAES.

View Article and Find Full Text PDF

Cerium oxide-anchored titanium carbide (CeO-TiC) is realized as a potential inorganic filler when modifying the Nafion matrix of a proton-exchange membrane fuel cell (PEMFC). A hydrothermal strategy was employed to synthesize CeO-TiC of high crystallinity as a filler to mitigate the problematic properties of a proton-exchange membrane (PEM). CeO-TiC with a weight ratio of 0.

View Article and Find Full Text PDF

Tremendous developments in energy storage and conversion technologies urges researchers to develop inexpensive, greatly efficient, durable and metal-free electrocatalysts for tri-functional electrochemical reactions, namely oxygen reduction reactions (ORRs), oxygen evolution reactions (OERs) and hydrogen evolution reactions (HERs). In these regards, this present study focuses upon the synthesis of porous carbon (PC) or N-doped porous carbon (N-PC) acquired from golden shower pods biomass (GSB) via solvent-free synthesis. Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies confirmed the doping of nitrogen in N-PC.

View Article and Find Full Text PDF

In this contribution, sulfonated poly(ether ether ketone) (SPEEK) is inter-connected using a hydrophobic oligomer via poly-condensation reaction to produce SPEEK analogues as PEMs. Prior sulfonation is performed for SPEEK to avoid random sulfonation of multi-block copolymers that may destroy the mechanical toughness of polymer backbone. A greater local density of ionic moieties exist in SPEEK and good thermomechanical properties of hydrophobic unit offer an unique approach to promote the proton conductivity as well as thermomechanical stability of membrane, as verify from AC impedance and TGA.

View Article and Find Full Text PDF

Direct alcohol fuel cells play a pivotal role in the synthesis of catalysts because of their low cost, high catalytic activity, and long durability in half-cell reactions, which include anode (alcohol oxidation) and cathode (oxygen reduction) reactions. However, platinum catalysts suffer from CO tolerance, which affects their stability. The present study focuses on ultrafine Pt nanoparticles stabilized by flowerlike MoS/N-doped reduced graphene oxide (Pt@MoS/NrGO) architecture, developed via a facile and cost-competitive approach that was performed through the hydrothermal method followed by the wet-reflux strategy.

View Article and Find Full Text PDF

A hybrid nanofibrous mat consisting of polyurethane, dextran, and 10 wt % of biopigment (i.e., pyocyanin) was facilely fabricated using a direct-conventional electrospinning method.

View Article and Find Full Text PDF

Iron oxide (FeO) nanoparticles anchored over sulfonated graphene oxide (SGO) and Nafion/FeO-SGO composites were fabricated and applied as potential proton exchange membranes in proton exchange membrane fuel cells (PEMFCs) operated at high temperature and low humidity. FeO nanoparticles bridge SGO and Nafion through electrostatic interaction/hydrogen bonding and increased the intrinsic thermal and mechanical stabilities of Nafion/FeO-SGO composite membranes. Nafion/FeO-SGO composite membranes increased the compactness of ionic domains and enhanced the water absorption and proton conductivity while restricting hydrogen permeability across the membranes.

View Article and Find Full Text PDF

Platinum nanoparticles (Pt NPs) was synthesized via a facile and cost competitive ont-pot green mediated synthesis using cell free cultural filtrate (microgravity simulated grown Penicillium chrysogenum) as a reducing agent. The toxicity effect of synthesized Pt NPs toward myoblast C2C12 carcinoma cells was then investigated. The particle size analyzer (DLS) and transmission electron microscopy (TEM) results demonstrates that both NG-Pt NPs and MG-Pt NPS are spherical in shape with an average diameter of 15 nm and 8.

View Article and Find Full Text PDF