The rapid development of the Belt and Road Initiative (BRI) has led to severe air pollution dominated by PM2.5 concentrations which can cause a profound negative impact on human health and economic activity. This problem poses a critical environmental challenge to efficiently handling large-scale spatial-temporal PM2.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2023
The application of spatiotemporal functional analysis techniques in environmental pollution research remains limited. As a result, this paper suggests spatiotemporal functional data clustering and visualization tools for identifying temporal dynamic patterns and spatial dependence of multiple air pollutants. The study uses concentrations of four major pollutants, named particulate matter (PM2.
View Article and Find Full Text PDFBackground: Methods for the multiview clustering and integration of multi-omics data have been developed recently to solve problems caused by data noise or limited sample size and to integrate multi-omics data with consistent (common) and differential cluster patterns. However, the integration of such data still suffers from limited performance and low accuracy.
Results: In this study, a computational framework for the multiview clustering method based on the penalty model is presented to overcome the challenges of low accuracy and limited performance in the case of integrating multi-omics data with consistent (common) and differential cluster patterns.