Variola virus is an anthroponotic agent that belongs to the orthopoxvirus family. It is an etiological agent of smallpox, an ancient disease that caused massive mortality of human populations. Twentieth century has witnessed the death of about 300 million people due to the unavailability of an effective vaccine.
View Article and Find Full Text PDFHost-virus Protein-Protein Interactions (PPIs) play pivotal roles in biological processes crucial for viral pathogenesis and by extension, inform antiviral drug discovery and therapeutics innovations. Despite efforts to develop the Epstein-Barr virus (EBV)-host PPI network, there remain significant knowledge gaps and a limited number of interacting human proteins deciphered. Furthermore, understanding the dynamics of the EBV-host PPI network in the distinct lytic and latent viral stages remains elusive.
View Article and Find Full Text PDFEpstein-Barr virus or human herpesvirus 4 (EBV/HHV-4) is an omnipresent oncovirus etiologically associated with various B-cell lymphomas and epithelial cancers. The malignant transformation associated with the persistent expression of viral proteins often deregulates the host cellular machinery and EBV infection is coupled to elevated levels of reactive oxygen species. Here, we investigated the role that the glutamate transporter EAAT3 plays in regulating the antioxidant system as a protective mechanism of EBV-infected cells against the virus-induced oxidative stress.
View Article and Find Full Text PDFVirus onslaughts continue to spread fear and cause rampage across the world every now and then. The twenty first century is yet again witnessing a gross global pandemic, Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Globally no vaccines or drug specific to COVID-19 is available.
View Article and Find Full Text PDFProximity ligation assay (PLA) is a newly developed technique that outperforms the traditional immunoassays for visualizing the in situ endogenous protein-protein interactions and localizations and the activation of proteins in cell culture systems as well as in tissue sections. PLA, when combined with cellular marker staining, becomes a powerful approach to identify differential interaction of the proteins of endosomal sorting complex required for transport (ESCRT) at distinct stages of virus infection. In this chapter, we describe a PLA protocol to study the localization and interaction between the ESCRT protein TSG101 and endosomal markers in early stages of viral endocytosis in in vitro infected cells.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV) infection of dermal endothelial cells begins with its binding to host cell surface receptor molecules such as heparan sulfate (HS), integrins (α3β1, αVβ3, and αVβ5), xCT, and EphA2 receptor tyrosine kinase (EphA2R). These initial events initiate dynamic host protein-protein interactions involving a multimolecular complex of receptors, signal molecules (focal adhesion kinase [FAK], Src, phosphatidylinositol 3-kinase [PI3-K], and RhoA-GTPase), adaptors (c-Cbl, CIB1, Crk, p130Cas, and GEF-C3G), actin, and myosin II light chain that lead to virus entry via macropinocytosis. Here we discuss how KSHV hijacks c-Cbl, an E3 ubiquitin ligase, to monoubiquitinate the receptors and actin, which acts like a marker for trafficking (similar to zip codes), resulting in the recruitment of the members of the host endosomal sorting complexes required for transport (ESCRT) Hrs, Tsg101, EAP45, and the CHMP5 and -6 proteins (zip code readers) recognizing the ubiquitinated protein and adaptor machinery to traffic through the different endosomal compartments in the cytoplasm to initiate the macropinocytic process and infection.
View Article and Find Full Text PDFIFI16 (gamma-interferon-inducible protein 16), a predominantly nuclear protein involved in transcriptional regulation, also functions as an innate immune response DNA sensor and induces the IL-1β and antiviral type-1 interferon-β (IFN-β) cytokines. We have shown that IFI16, in association with BRCA1, functions as a sequence independent nuclear sensor of episomal dsDNA genomes of KSHV, EBV and HSV-1. Recognition of these herpesvirus genomes resulted in IFI16 acetylation, BRCA1-IFI16-ASC-procaspase-1 inflammasome formation, cytoplasmic translocation, and IL-1β generation.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV) binding to the endothelial cell surface heparan sulfate is followed by sequential interactions with α3β1, αVβ3 and αVβ5 integrins and Ephrin A2 receptor tyrosine kinase (EphA2R). These interactions activate host cell pre-existing FAK, Src, PI3-K and RhoGTPase signaling cascades, c-Cbl mediated ubiquitination of receptors, recruitment of CIB1, p130Cas and Crk adaptor molecules, and membrane bleb formation leading to lipid raft dependent macropinocytosis of KSHV into human microvascular dermal endothelial (HMVEC-d) cells. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins, ESCRT-0, -I, -II, and-III, play a central role in clathrin-mediated internalized ubiquitinated receptor endosomal trafficking and sorting.
View Article and Find Full Text PDFUnlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) enters human dermal microvascular endothelial cells (HMVEC-d), its naturalin vivotarget cells, by lipid raft-dependent macropinocytosis. The internalized viral envelope fuses with the macropinocytic membrane, and released capsid is transported to the nuclear vicinity, resulting in the nuclear entry of viral DNA. The endosomal sorting complexes required for transport (ESCRT) proteins, which include ESCRT-0, -I, -II, and -III, play a central role in endosomal trafficking and sorting of internalized and ubiquitinated receptors.
View Article and Find Full Text PDFThe IL-1β and type I interferon-β (IFN-β) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1β and IFN-β production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1β production.
View Article and Find Full Text PDFThe innate immune system pattern recognition receptors (PRR) are the first line of host defenses recognizing the various pathogen- or danger-associated molecular patterns and eliciting defenses by regulating the production of pro-inflammatory cytokines such as IL-1β, IL-18 or interferon β (IFN-β). NOD-like receptors (NLRs) and AIM2-like receptors (ALRs) are cytoplasmic inflammasome sensors of foreign molecules, including DNA. IFI16, a sequence-independent nuclear innate sensor ALR, recognizes episomal dsDNA genomes of herpes viruses such as KSHV, EBV, and HSV-1 in the infected cell nuclei, forms an inflammasome complex with ASC and procaspase1, and relocates into the cytoplasm leading into Caspase-1 and IL-1β generation.
View Article and Find Full Text PDFUnlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. We have previously shown that KSHV utilizes the host transcription factor Nrf2 to aid in infection of endothelial cells and oncogenesis. Here, we investigate the role of Nrf2 in PEL and PEL-derived cell lines and show that KSHV latency induces Nrf2 protein levels and transcriptional activity through the COX-2/PGE2/EP4/PKCζ axis.
View Article and Find Full Text PDFUnlabelled: Nuclear factor erythroid 2-related factor 2 (Nrf2), the cellular master regulator of the antioxidant response, dissociates from its inhibitor Keap1 when activated by stress signals and participates in the pathogenesis of viral infections and tumorigenesis. Early during de novo infection of endothelial cells, KSHV induces Nrf2 through an intricate mechanism involving reactive oxygen species (ROS) and prostaglandin E2 (PGE2). When we investigated the Nrf2 activity during latent KSHV infection, we observed increased nuclear serine-40-phosphorylated Nrf2 in human KS lesions compared to that in healthy tissues.
View Article and Find Full Text PDFVirus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS) and primary effusion B-cell lymphoma. KSHV induces reactive oxygen species (ROS) early during infection of human dermal microvascular endothelial (HMVEC-d) cells that are critical for virus entry. One of the downstream targets of ROS is nuclear factor E2-related factor 2 (Nrf2), a transcription factor with important anti-oxidative functions.
View Article and Find Full Text PDFUnlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection.
View Article and Find Full Text PDFAngiogenin (ANG), a 14-kDa pro-angiogenic secreted protein, has been shown to play a role in cell migration and tumor invasion, which involve proteolytic cleavage of plasminogen to generate plasmin. However, the mechanism by which ANG regulates plasmin formation and cell migration was not known. Our studies here detected elevated levels of secreted and cell surface-bound ANG in highly invasive metastatic breast cancer cells.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). KS lesions are characterized by endothelial cells with multiple copies of the latent KSHV episomal genome, lytic replication in a low percentage of infiltrating monocytes, and inflammatory cytokines plus growth factors. We demonstrated that KSHV utilizes inflammatory cyclooxygenase 2/prostaglandin E2 to establish and maintain latency (Sharma-Walia, N.
View Article and Find Full Text PDFAngiogenin (ANG) is a 14-kDa multifunctional proangiogenic secreted protein whose expression level correlates with the aggressiveness of several tumors. We observed increased ANG expression and secretion in endothelial cells during de novo infection with Kaposi's sarcoma-associated herpesvirus (KSHV), in cells expressing only latency-associated nuclear antigen 1 (LANA-1) protein, and in KSHV latently infected primary effusion lymphoma (PEL) BCBL-1 and BC-3 cells. Inhibition of phospholipase Cγ (PLCγ) mediated ANG's nuclear translocation by neomycin, an aminoglycoside antibiotic (not G418-neomicin), resulted in reduced KSHV latent gene expression, increased lytic gene expression, and increased cell death of KSHV(+) PEL and endothelial cells.
View Article and Find Full Text PDFEpstein-Barr virus (EBV), etiologically linked with human B-cell malignancies and nasopharyngeal carcinoma (NPC), establishes three types of latency that facilitate its episomal genome persistence and evasion of host immune responses. The innate inflammasome responses recognize the pathogen-associated molecular patterns which lead into the association of a cytoplasmic sensor such as NLRP3 and AIM2 proteins or nuclear interferon-inducible protein 16 (IFI16) with adaptor ASC protein (apoptosis-associated speck-like protein with a caspase recruitment domain) and effector procaspase-1, resulting in active caspase-1 formation which cleaves the proforms of inflammatory interleukin-1β (IL-1β), IL-18, and IL-33 cytokines. Whether inflammasome responses recognize and respond to EBV genome in the nuclei was not known.
View Article and Find Full Text PDFKaposi's sarcoma-associated herpesvirus (KSHV), etiologically associated with Kaposi's sarcoma, uses integrins (α3β1, αVβ3, and αVβ5) and associated signaling to enter human dermal microvascular endothelial cells (HMVEC-d), an in vivo target of infection. KSHV infection activated c-Cbl, which induced the selective translocation of KSHV into lipid rafts (LRs) along with the α3β1, αVβ3, and xCT receptors, but not αVβ5. LR-translocated receptors were monoubiquitinated, leading to productive macropinocytic entry, whereas non-LR-associated αVβ5 was polyubiquitinated, leading to clathrin-mediated entry that was targeted to lysosomes.
View Article and Find Full Text PDFHerpesvirus infection of target cells is a complex process involving multiple host cell surface molecules (receptors) and multiple viral envelope glycoproteins. Kaposi's sarcoma associated herpesvirus (KSHV or HHV-8) infects a variety of in vivo target cells such as endothelial cells, B cells, monocytes, epithelial cells, and keratinocytes. KSHV also infects a diversity of in vitro target cells and establishes in vitro latency in many of these cell types.
View Article and Find Full Text PDF