Publications by authors named "Mohanad A Deif"

The utilization of mechanical ventilation is of utmost importance in the management of individuals afflicted with severe pulmonary conditions. During periods of a pandemic, it becomes imperative to build ventilators that possess the capability to autonomously adapt parameters over the course of treatment. In order to fulfil this requirement, a research investigation was undertaken with the aim of forecasting the magnitude of pressure applied on the patient by the ventilator.

View Article and Find Full Text PDF

Overall prediction of oral cavity squamous cell carcinoma (OCSCC) remains inadequate, as more than half of patients with oral cavity cancer are detected at later stages. It is generally accepted that the differential diagnosis of OCSCC is usually difficult and requires expertise and experience. Diagnosis from biopsy tissue is a complex process, and it is slow, costly, and prone to human error.

View Article and Find Full Text PDF

Sarcoidosis is frequently misdiagnosed as tuberculosis (TB) and consequently mistreated due to inherent limitations in radiological presentations. Clinically, to distinguish sarcoidosis from TB, physicians usually employ biopsy tissue diagnosis and blood tests; this approach is painful for patients, time-consuming, expensive, and relies on techniques prone to human error. This study proposes a computer-aided diagnosis method to address these issues.

View Article and Find Full Text PDF

In this work, Deep Bidirectional Recurrent Neural Networks (BRNNs) models were implemented based on both Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells in order to distinguish between genome sequence of SARS-CoV-2 and other Corona Virus strains such as SARS-CoV and MERS-CoV, Common Cold and other Acute Respiratory Infection (ARI) viruses. An investigation of the hyper-parameters including the optimizer type and the number of unit cells, was also performed to attain the best performance of the BRNN models. Results showed that the GRU BRNNs model was able to discriminate between SARS-CoV-2 and other classes of viruses with a higher overall classification accuracy of 96.

View Article and Find Full Text PDF

The sudden increase in patients with severe COVID-19 has obliged doctors to make admissions to intensive care units (ICUs) in health care practices where capacity is exceeded by the demand. To help with difficult triage decisions, we proposed an integration system Xtreme Gradient Boosting (XGBoost) classifier and Analytic Hierarchy Process (AHP) to assist health authorities in identifying patients' priorities to be admitted into ICUs according to the findings of the biological laboratory investigation for patients with COVID-19. The Xtreme Gradient Boosting (XGBoost) classifier was used to decide whether or not they should admit patients into ICUs, before applying them to an AHP for admissions' priority ranking for ICUs.

View Article and Find Full Text PDF