J Pharmacol Toxicol Methods
January 2023
Protein malnutrition continues to be a major global issue. A stable animal model to address protein malnutrition and its effect on various disease conditions is necessary. In the present study, we have formulated and standardized a low protein diet (LPD) to develop a protein malnutrition model using Balb/C mice.
View Article and Find Full Text PDFThe presence of mesenchymal progenitor cells (MPCs) in rheumatoid arthritis (RA) articular cartilage is sparsely investigated largely owing to the persistent pathogenic disease condition and lack of specific biomarkers. Considering the recent advancements for potential cell-based therapies in immunomodulatory diseases, such as RA, this in vitro study was aimed at investigating the cellular, molecular, and differentiation characteristics of human RA cartilage-derived MPCs. Articular cartilage fragments from RA patients were obtained for the isolation of MPCs and characterization of their cellular and biological properties, cytogenetic stability, pluripotency, and plasticity.
View Article and Find Full Text PDFHyaluronic acid (HA) is a naturally occurring biopolymer, with a remarkable wound healing property. Zinc-oxide non-eugenol is a material widely used for periodontal dressing in dentistry. However, it has been reported that zinc oxide non-eugenol is toxic to osteoblasts and fibroblasts.
View Article and Find Full Text PDFBackground: A major challenge in bone tissue regeneration is the use of right combination of stem cells with osteoinductive biomaterials. Hence, the present study was aimed at evaluating the effect of mineralized teeth matrix (MTM) and demineralized teeth matrix (DTM) on the selected cellular and biological characteristics of human dental pulp stem cells (DPSCs).
Methods: Established DPSCs were cultured in conditioned media (CM) of MTM and DTM and analyzed on their morphology, proliferation rate, population doubling time (PDT), viability, migration ability, ploidy and expression of cell surface markers, Further, the effect of MTM and DTM on the biocompatibility and osteogenic differentiation ability of DPSCs was evaluated.
The present study evaluated the human mesenchymal stem cells (hMSCs) isolated from skin (hSMSC), bone marrow (hBMSC) and dental follicle (hDFMSC) tissues on their in vitro and in vivo osteogenic potential using demineralized bone matrix (DBM) and fibrin glue scaffold. Cells originated from three distinct tissues showed positive expressions of CD44, CD73, CD90, CD105 and vimentin, and differentiation ability into osteocytes, adipocytes and chondrocytes. hMSCs from all tissues co-cultured with a mixed DBM and fibrin glue scaffold in non-osteogenic induction media were positively stained by von Kossa and expressed osteoblast-related genes, such as osteocalcin (OC), osteonectin (ON), runt-related transcription factor 2 (Runx2) and osterix.
View Article and Find Full Text PDFReprod Domest Anim
December 2011
This study investigated the timing of DNA synthesis and patterns of pronuclear (PN) formation during the first cell cycle, and its influence on developmental competence, velocity and proliferation index of porcine parthenote blastocysts produced by different activation treatments. Oocytes were activated as follows: electrical stimulation (EST), EST combined with 7.5 μg/ml cytochalasin B (EST + CCB), 10 μg/ml cycloheximide (EST + CHX) and 1.
View Article and Find Full Text PDFThe present study evaluated the effective dose of sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor, for determination of the level of enhancement of histone acetylation in porcine fetal fibroblasts (PFFs) based on their morphology, growth, apoptosis and cell cycle status. Cells were analyzed for their histone acetylation levels at H3, H4 and H2A and expression of genes related to histone deacetylation (HDAC1, HDAC2 and HDAC3), pro-apoptosis (Bax and Bak) and anti-apoptosis (Bcl-2). PFFs at passage 3-4 were cultured with 0, 0.
View Article and Find Full Text PDFThis study evaluated the effects of two different oxygen (O2) concentrations on in vitro embryo development, embryo quality, and gene expression and the in vivo development following embryos transfer to recipients of natural and synchronized estrus in bovines. Cumulus oocyte complexes were in vitro matured in TCM199 supplemented with FSH (10 microg/ml), LH (10 microg/ml), and 10% (v/v) FBS. Presumptive zygotes were cultured in SOF medium either under 5% (low) or 20% (high) O2 in air.
View Article and Find Full Text PDFThis study evaluated the effects of exposure and/or vitrification of porcine metaphase II (MII) oocytes on their in vitro viability and ultra-structural changes with two experiments. Experiment 1 examined the effect of vitrified oocytes on microtubule localization, mitochondrial morphology, chromosome organization and the developmental rate in IVF control and vitrified oocytes. Oocytes matured for 44 h were subjected to IVF (IVF control).
View Article and Find Full Text PDFRemoval of the somatic DNA methylation pattern from donor cells and remodeling of embryonic status have been suggested as integral processes for successful nuclear transfer (NT) reprogramming. This study has investigated the effects of 5-azacytidine (5-azaC), a DNA methylation inhibitor, on global methylation changes in porcine fetal fibroblasts (PFF); this may improve NT attributable to the potential reprogramming of the methyl groups. PFF in 5th passage cultures were treated with 0, 0.
View Article and Find Full Text PDFBovine oocyte activation is one of the essential elements that determine the success of nuclear transfer and the subsequent development of cloned embryos. Three methods for oocyte activation, including 5 microM ionomycin (5 min, Group 1) alone, ionomycin+1.9 mM 6-dimethylaminopurine (DMAP, 3h, Group 2), and ionomycin+10 microg/ml cycloheximide (CHX, 3h, Group 3) were compared for the development of embryos produced by somatic nuclear transfer (SCNT) to parthenotes and IVF counterparts.
View Article and Find Full Text PDFThe present study was designed to examine the effects of cell-cycle synchronization protocols, such as confluent, roscovitine treatment and serum starvation, in bovine foetal fibroblasts on synchronization accuracy at G0/G1, viability, apoptosis, necrosis and ploidy for use as a nuclei donor. The cells in 5-10 passages were randomly allocated into three treated groups. Cells were cultured either in Dulbecco's modified Eagle's medium (DMEM) + 10% foetal bovine serum (FBS) until 90% confluent (group 1, confluent), in DMEM + 10% FBS + 30 microM roscovitine for 12 h (group 2, roscovitine), or in DMEM + 0.
View Article and Find Full Text PDF