Chikungunya virus (CHIKV) is a causative agent of a disease continuum, ranging from an acute transient chikungunya fever to chronic incapacitating viral arthralgia. The interaction between anti-CHIKV antibodies and the complement system has recently received attention. However, the contribution of complement activation in CHIKV-induced pathologies has not been fully elucidated.
View Article and Find Full Text PDFObesity induces multifactorial effects such as dyslipidemia, insulin resistance, and arterial hypertension that influence the progression of many diseases. Obesity is associated with an increased incidence of cancers, and multiple mechanisms link obesity with cancer initiation and progression. Macrophages participate in the homeostasis of adipose tissue and play an important role in cancer.
View Article and Find Full Text PDFIL-17-producing Th17 cells play an important role in pathogenesis of rheumatoid arthritis (RA). Aberrant immune activation due to an imbalance between Th17 and regulatory T (Treg) cells is associated with the development of RA and other autoimmune diseases. Targeting pathogenic Th17 cells and their associated molecules is emerging as a promising strategy to treat and reverse RA.
View Article and Find Full Text PDFIL-3, a haematopoiesis regulatory factor, has previously been shown to inhibit both mouse and human osteoclast differentiation and bone resorption. Here, the role of rat IL-3 on rat osteoclast differentiation was evaluated to address whether the inhibitory action of IL-3 on osteoclastogenesis is conserved in various species. It was observed that IL-3 inhibited rat osteoclast differentiation induced by both TNF-α and receptor activator of NF-ĸB ligand (RANKL).
View Article and Find Full Text PDFSurface mechanical attrition treatment (SMAT) of metallic biomaterials has gained significant importance due to its ability to develop nano structure in the surface region. In the present study, the microstructural changes and corrosion behavior of the commercially pure titanium (cp-Ti), following different durations of ultrasonic shot peening (USSP) has been investigated. cp-Ti was shot peened for different durations from 0 to 120 s and the treated samples were examined for microstructural changes in the surface region, cell viability and corrosion behavior.
View Article and Find Full Text PDFIL-3, a cytokine secreted by activated T lymphocytes, is known to regulate the proliferation, survival, and differentiation of hematopoietic cells. However, the role of IL-3 in regulation of T cell functions is not fully delineated. Previously, we have reported that IL-3 plays an important role in development of regulatory T cells in mice.
View Article and Find Full Text PDFF-box protein 31 (FBXO31) is a reported putative tumor suppressor, and its inactivation due to loss of heterozygosity is associated with cancers of different origins. An emerging body of literature has documented FBXO31's role in preserving genome integrity following DNA damage and in the cell cycle. However, knowledge regarding the role of FBXO31 during normal cell-cycle progression is restricted to its functions during the G/M phase.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
September 2019
Estrogen increases bone formation by promoting mineralization and prolonging the lifespan of osteoblasts. To understand the underlying molecular mechanism/s, we identified estrogen-regulated proteins at different stages of human osteoblast differentiation using differential proteomics approach. Among the identified proteins, we observed that estrogen upregulated RAB3GAP1 on day 1 and 5 of differentiation.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2019
Estrogen insufficiency at menopause cause accelerated bone loss due to unwarranted differentiation and function of osteoclasts. Unraveling the underlying mechanism/s may identify mediators of estrogen action which can be targeted for improved management of osteoporosis. Towards this, we analyzed the effect of 17β-estradiol on the proteomes of differentiating human osteoclasts.
View Article and Find Full Text PDFInterleukin-33 (IL-33) is a member of the IL-1 family of cytokines that play a central role in the regulation of immune responses. Its release from epithelial and endothelial cells is mediated by pro-inflammatory cytokines, cell damage and by recognition of pathogen-associated molecular patterns (PAMPs). The activity of IL-33 is mediated by binding to the IL-33 receptor complex (IL-33R) and activation of NF-κB signaling via the classical MyD88/IRAK/TRAF6 module.
View Article and Find Full Text PDFBone remodeling comprises balanced activities between osteoclasts and osteoblasts, which is regulated by various factors, including hormones and cytokines. We previously reported that IL-3 inhibits osteoclast differentiation and pathological bone loss. IL-3 also enhances osteoblast differentiation and bone formation from mesenchymal stem cells.
View Article and Find Full Text PDFBacterial cellulose (BC) is a naturally occurring nanofibrous biomaterial which exhibits unique physical properties and is amenable to chemical modifications. To explore whether this versatile material can be used in the treatment of osteochondral defects (OCD), we developed and characterized novel BC-based nanocomposite scaffolds, for example, BC-hydroxyapatite (BC-HA) and BC-glycosaminoglycans (BC-GAG) that mimic bone and cartilage, respectively. In vitro biocompatibility of BC-HA and BC-GAG scaffolds was established using osteosarcoma cells, human articular chondrocytes, and human adipose-derived mesenchymal stem cells.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells (MSCs) represent an important source for cell therapy in regenerative medicine. MSCs have shown promising results for repair of damaged tissues in various degenerative diseases in animal models and also in human clinical trials. However, little is known about the factors that could enhance the migration and tissue-specific engraftment of exogenously infused MSCs for successful regenerative cell therapy.
View Article and Find Full Text PDFOsteoarthritis (OA) is a chronic disease of articular joints that leads to degeneration of both cartilage and subchondral bone. These degenerative changes are further aggravated by proinflammatory cytokines including IL-1β and TNF-α. Previously, we have reported that IL-3, a cytokine secreted by activated T cells, protects cartilage and bone damage in murine models of inflammatory and rheumatoid arthritis.
View Article and Find Full Text PDFPigment Cell Melanoma Res
July 2016
Vitiligo is a multifactorial acquired depigmenting disorder. Recent insights into the molecular mechanisms driving the gradual destruction of melanocytes in vitiligo will likely lead to the discovery of novel therapies, which need to be evaluated in animal models that closely recapitulate the pathogenesis of human vitiligo. In humans, vitiligo is characterized by a spontaneous loss of functional melanocytes from the epidermis, but most animal models of vitiligo are either inducible or genetically programmed.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis leading to joint destruction and systemic bone loss. The inflammation-induced bone loss is mediated by increased osteoclast formation and function. Current antirheumatic therapies primarily target suppression of inflammatory cascade with limited or no success in controlling progression of bone destruction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2014
The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass.
View Article and Find Full Text PDFThis investigation was carried out to study the effect of a novel process of surface modification, surface nanostructuring by ultrasonic shot peening, on osteoblast proliferation and corrosion behavior of commercially pure titanium (c p-Ti) in simulated body fluid. A mechanically polished disc of c p-Ti was subjected to ultrasonic shot peening with stainless steel balls to create nanostructure at the surface. A nanostructure (<20 nm) with inhomogeneous distribution was revealed by atomic force and scanning electron microscopy.
View Article and Find Full Text PDFThere is emerging evidence that stem cells can rejuvenate damaged cells by mitochondrial transfer. Earlier studies show that epithelial mitochondrial dysfunction is critical in asthma pathogenesis. Here we show for the first time that Miro1, a mitochondrial Rho-GTPase, regulates intercellular mitochondrial movement from mesenchymal stem cells (MSC) to epithelial cells (EC).
View Article and Find Full Text PDFIL-3 is an important cytokine that regulates hematopoiesis. We have previously demonstrated that IL-3 is a potent inhibitor of osteoclastogenesis and bone resorption. In the present study, we have investigated the role of IL-3 on human osteoblast differentiation and bone formation.
View Article and Find Full Text PDFReceptor activator of nuclear factor-kappa B ligand (RANKL) is a member of tumor necrosis factor (TNF) superfamily that plays a key role in the regulation of differentiation, activation and survival of osteoclasts and also in tumor cell migration and bone metastasis. Osteoclast activation induced by RANKL regulates hematopoietic stem cell mobilization as part of homeostasis and host defense mechanisms thereby linking regulation of hematopoiesis with bone remodeling. Binding of RANKL to its receptor, Receptor activator of nuclear factor-kappa B (RANK) activates molecules such as NF-kappa B, mitogen activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT) and phosphatidyl 3-kinase (PI3K).
View Article and Find Full Text PDFIL-3, a cytokine secreted by Th cells, functions as a link between the immune and the hematopoietic system. We previously demonstrated the potent inhibitory role of IL-3 on osteoclastogenesis, pathological bone resorption, and inflammatory arthritis. In this study, we investigated the novel role of IL-3 in development of regulatory T (Treg) cells.
View Article and Find Full Text PDFIL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-kappaB (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK).
View Article and Find Full Text PDFIL-3 is an important cytokine that regulates hematopoiesis and functions as a link between the immune and the hematopoietic system. In this study, we investigated the role and mechanism of IL-3 action on human osteoclast formation and bone resorption using PBMCs. PBMCs differentiate into functional osteoclasts in the presence of M-CSF and receptor activator of NF-kappaB ligand as evaluated by 23c6 expression and bone resorption.
View Article and Find Full Text PDFBackground: One of the most common esthetic concerns associated with periodontal tissues is gingival recession. There are multiple periodontal plastic surgery approaches documented in the literature for the treatment of such defects. With the tremendous advances being made in periodontal science and technology, tissue engineering could be considered among the latest exciting techniques for recession management.
View Article and Find Full Text PDF