Publications by authors named "Mohan Pal"

A Pd-catalyzed decarboxylative dearomatization reaction of a heterocyclic substrate enables access to an uncommon reaction intermediate that rearomatizes in the presence of amine bases in a net C-H functionalization sequence. The dearomatized benzo[]thiophene intermediate bears an exocyclic alkene that can be functionalized through cycloaddition and halogenation reactions to deliver complex heterocyclic products.

View Article and Find Full Text PDF

Peripheral blood monocytes are the cells predominantly responsible for systemic dissemination of human cytomegalovirus (HCMV) and a significant cause of morbidity and mortality in immunocompromised patients. HCMV establishes a silent/quiescent infection in monocytes, which is defined by the lack of viral replication and lytic gene expression. The absence of replication shields the virus within infected monocytes from the current available antiviral drugs that are designed to suppress active replication.

View Article and Find Full Text PDF

Anti-apoptotic Bcl-2 family proteins are overexpressed in a wide spectrum of cancers and have become well validated therapeutic targets. Cancer cells display survival dependence on individual or subsets of anti-apoptotic proteins that could be effectively targeted by multimodal inhibitors. We designed a 2,5-substituted benzoic acid scaffold that displayed equipotent binding to Mcl-1 and Bfl-1.

View Article and Find Full Text PDF

Opioid peptides are key regulators in cellular and intercellular physiological responses, and could be therapeutically useful for modulating several pathological conditions. Unfortunately, the use of peptide-based agonists to target centrally located opioid receptors is limited by poor physicochemical (PC), distribution, metabolic, and pharmacokinetic (DMPK) properties that restrict penetration across the blood-brain barrier via passive diffusion. To address these problems, the present paper exploits fluorinated peptidomimetics to simultaneously modify PC and DMPK properties, thus facilitating entry into the central nervous system.

View Article and Find Full Text PDF

Rational approaches for the design of enzyme inhibitors furnish powerful strategies for developing pharmaceutical agents and tools for probing biological mechanisms. A new strategy for the development of gem-disubstituted substrate-product analogues as inhibitors of racemases and epimerases is elaborated using α-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis (MtMCR) as a model enzyme. MtMCR catalyzes the epimerization at C2 of acyl-CoA substrates, a key step in the metabolism of branched-chain fatty acids.

View Article and Find Full Text PDF

We describe the design, synthesis, and opioid activity of fluoroalkene (Tyr -ψ[(Z)CF=CH]-Gly ) and trifluoroethylamine (Tyr -ψ[(S)/(R)-CF CH-NH]-Gly ) analogues of the endogenous opioid neuropeptide, Leu-enkephalin. The fluoroalkene peptidomimetic exhibited low nanomolar functional activity (5.0±2 nm and 60±15 nm for δ- and μ-opioid receptors, respectively) with a μ/δ-selectivity ratio that mimics that of the natural peptide.

View Article and Find Full Text PDF

2,2-Bis(4-isobutylphenyl)propanoyl-CoA and 2,2-bis(4-t-butylphenyl)propanoyl-CoA are rationally designed, gem-disubstituted substrate-product analogues that competitively inhibit α-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis with Ki values of 16.9 ± 0.6 and 21 ± 4 μM, respectively, exceeding the enzyme's affinity for the substrate by approximately 5-fold.

View Article and Find Full Text PDF

Regioselective S-acylation of coenzyme A (CoA) is achieved under aqueous conditions using various aliphatic and aromatic carboxylic acids activated as their methyl acyl phosphate monoesters. Unlike many hydrophobic activating groups, the anionic methyl acyl phosphate mixed anhydride is more compatible with aqueous solvents, making it useful for conducting acylation reactions in an aqueous medium.

View Article and Find Full Text PDF

D-Glutamate is an essential biosynthetic building block of the peptidoglycans that encapsulate the bacterial cell wall. Glutamate racemase catalyzes the reversible formation of D-glutamate from L-glutamate and, hence, the enzyme is a potential therapeutic target. We show that the novel cyclic substrate-product analogue (R,S)-1-hydroxy-1-oxo-4-amino-4-carboxyphosphorinane is a modest, partial noncompetitive inhibitor of glutamate racemase from Fusobacterium nucleatum (FnGR), a pathogen responsible, in part, for periodontal disease and colorectal cancer (Ki=3.

View Article and Find Full Text PDF

Enantioenriched heteroaryl ethanols and aryl heteroarylmethanols are important intermediates and structural motifs in medicinal chemistry. Asymmetric biocatalytic reduction of corresponding ketones provides a straightforward approach for preparation of these compounds. Accordingly, three newly isolated fungal strains have been described, which produced the desired heteroaryl alcohols in high enantiomeric excess (ee).

View Article and Find Full Text PDF

In this communication we report for the first time a biocatalytic method for stereoselective oxidation of β-lactams, represented by penicillin-G, penicillin-V and cephalosporin-G to their (R)-sulfoxides. The method involves use of a bacterium, identified as Bacillus pumilis as biocatalyst. The enzyme responsible for oxidase activity has been purified and characterized as catalase-peroxidase (KatG).

View Article and Find Full Text PDF

We have shown that a structure as simple as an ion pair of (R)- or (S)-mandelate and dimethylamminopyridinium ions possesses structural features that are sufficient for NMR enantiodiscrimination of cyanohydrins. Moreover, (1)H NMR data of cyanohydrins of known configuration obtained in the presence of the mandelate-dimethylaminopyridinium ion pair point to the existence of a correlation between chemical shifts and absolute configuration of cyanohydrins. Mandelate-DMAPH(+) ion pair and mandelonitrile form a 1:1 complex with an association constant of 338 M(-1) (DeltaG(0), -3.

View Article and Find Full Text PDF