Pediatr Neurol
September 2022
Background: Hyperekplexia is a rare disorder characterized by exaggerated startle responses to unexpected sensory stimuli, recurrent apneas, and stiffness. Only few studies have been published on this disorder in populations with high rates of consanguinity.
Methods: We retrospectively reviewed Saudi patients with genetically confirmed hereditary hyperekplexia using a standard questionnaire that was sent to nine major referral hospitals in Saudi Arabia.
Hyperekplexia is a rare neurological disorder characterized by exaggerated startle responses affecting newborns with the hallmark characteristics of hypertonia, apnea, and noise or touch-induced nonepileptic seizures. The genetic causes of the disease can vary, and several associated genes and mutations have been reported to affect glycine receptors (GlyRs); however, the mechanistic links between GlyRs and hyperekplexia are not yet understood. Here, we describe a patient with hyperekplexia from a consanguineous family.
View Article and Find Full Text PDFGABA transaminase deficiency should be considered in the differential diagnosis of early onset epileptic encephalopathies. This case was diagnosed post-mortem, but increased vigilance to this will allow for earlier diagnoses in other infants and families. This is a case study which involved diagnosis of a rare neurometabolic disorder in one of the babies in the family and eventual genetic counselling of the family.
View Article and Find Full Text PDFPathogenic heterozygous variants in PIEZO2 typically cause distal arthrogryposis type 5 (DA5) and the closely related Gordon syndrome (GS). Only one case of PIEZO2-related Marden-Walker syndrome (MWS) has been reported to date. We report the phenotypic features of a Saudi female patient with features consistent with MWS in whom we identified a novel de novo likely pathogenic variant in PIEZO2.
View Article and Find Full Text PDFBackground: Homozygous frameshift mutation in RUBCN (KIAA0226), known to result in endolysosomal machinery defects, has previously been reported in a single Saudi family with autosomal recessive spinocerebellar ataxia (Salih ataxia, SCAR15, OMIM # 615705). The present report describes the clinical, neurophysiologic, neuroimaging, and genetic findings in a second unrelated Saudi family with two affected children harboring identical homozygous frameshift mutation in the gene. It also explores and documents an ancient founder cerebellar ataxia mutation in the Arabian Peninsula.
View Article and Find Full Text PDFPurpose: Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly.
Methods: Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes.
Arthrogryposis multiplex congenita (AMC) is an important birth defect with a significant genetic contribution. Many syndromic forms of AMC have been described, but remain unsolved at the molecular level. In this report, we describe a novel syndromic form of AMC in two multiplex consanguineous families from Saudi Arabia and Oman.
View Article and Find Full Text PDFDefects in the peroxisomes biogenesis and/or function result in peroxisomal disorders. In this study, we describe the largest Arab cohort to date (72 families) of clinically, biochemically and molecularly characterized patients with peroxisomal disorders. At the molecular level, we identified 43 disease-causing variants, half of which are novel.
View Article and Find Full Text PDFPurpose: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases.
View Article and Find Full Text PDFIn the published version of this paper the author Neus Baena's name was incorrectly given as Neus Baena Diez. This has now been corrected in both the HTML and PDF versions of the paper.
View Article and Find Full Text PDFPurpose: We delineate the clinical spectrum and describe the histology in arterial tortuosity syndrome (ATS), a rare connective tissue disorder characterized by tortuosity of the large and medium-sized arteries, caused by mutations in SLC2A10.
Methods: We retrospectively characterized 40 novel ATS families (50 patients) and reviewed the 52 previously reported patients. We performed histology and electron microscopy (EM) on skin and vascular biopsies and evaluated TGF-β signaling with immunohistochemistry for pSMAD2 and CTGF.
In this study, we report the experience of the only reference clinical next-generation sequencing lab in Saudi Arabia with the first 1000 families who span a wide-range of suspected Mendelian phenotypes. A total of 1019 tests were performed in the period of March 2016-December 2016 comprising 972 solo (index only), 14 duo (parents or affected siblings only), and 33 trio (index and parents). Multigene panels accounted for 672 tests, while whole exome sequencing (WES) represented the remaining 347 tests.
View Article and Find Full Text PDFObjective: Congenital hydrocephalus is an important birth defect, the genetics of which remains incompletely understood. To date, only 4 genes are known to cause Mendelian diseases in which congenital hydrocephalus is the main or sole clinical feature, 2 X-linked (L1CAM and AP1S2) and 2 autosomal recessive (CCDC88C and MPDZ). In this study, we aimed to determine the genetic etiology of familial congenital hydrocephalus with the assumption that these cases represent Mendelian forms of the disease.
View Article and Find Full Text PDFBackground: Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete.
Results: We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum.
Background: Asparagine synthetase deficiency (OMIM# 615574) is a very rare newly described neurometabolic disorder characterized by congenital microcephaly and severe global developmental delay, associated with intractable seizures or hyperekplexia. Brain MRI typically shows cerebral atrophy with simplified gyral pattern and delayed myelination. Only 12 cases have been described to date.
View Article and Find Full Text PDFGlutamatergic neurotransmission governs excitatory signaling in the mammalian brain, and abnormalities of glutamate signaling have been shown to contribute to both epilepsy and hyperkinetic movement disorders. The etiology of many severe childhood movement disorders and epilepsies remains uncharacterized. We describe a neurological disorder with epilepsy and prominent choreoathetosis caused by biallelic pathogenic variants in FRRS1L, which encodes an AMPA receptor outer-core protein.
View Article and Find Full Text PDFNonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD.
View Article and Find Full Text PDFHum Mutat
October 2015
Recently, Alazami et al. (2015) identified 33 putative candidate disease genes for neurogenetic disorders. One such gene was DPH1, in which a homozygous missense mutation was associated with a 3C syndrome-like phenotype in four patients from a single extended family.
View Article and Find Full Text PDFTremor Other Hyperkinet Mov (N Y)
July 2015
Background: The etiology of many cases of childhood-onset chorea remains undetermined, although advances in genomics are revealing both new disease-associated genes and variant phenotypes associated with known genes.
Methods: We report a Saudi family with a neurodegenerative course dominated by progressive chorea and dementia in whom we performed homozygosity mapping and whole exome sequencing.
Results: We identified a homozygous missense mutation in GM2A within a prominent block of homozygosity.
Meckel-Gruber syndrome (MKS) is a perinatally lethal disorder characterized by the triad of occipital encephalocele, polydactyly and polycystic kidneys. Typical of other disorders related to defective primary cilium (ciliopathies), MKS is genetically heterogeneous with mutations in a dozen genes to date known to cause the disease. In an ongoing effort to characterize MKS clinically and genetically, we implemented a gene panel and next-generation sequencing approach to identify the causal mutation in 25 MKS families.
View Article and Find Full Text PDFWe report on a case of Raine syndrome with a mutation in FAM20C and typical phenotypic features consisting of midface hypoplasia, hypoplastic nose, choanal atresia, wide fontanelle, exophthalmos, generalized osteosclerosis and intracranial calcification. New features in our patient are cerebellar hypoplasia and pachygyria. We review the literature and conclude that the triad of hypoplastic nose, exophthalmos and generalized osteosclerosis and/or intracranial calcification is consistent in all molecularly confirmed cases.
View Article and Find Full Text PDF