The human body normally uses alternative materials such as implants to replace injured or damaged bone. Fatigue fracture is a common and serious type of damage in implant materials. Therefore, a deep understanding and estimation or prediction of such loading modes, which are influenced by many factors, is of great importance and attractiveness.
View Article and Find Full Text PDFGlass-fiber-reinforced pipe (GRP) is a strong alternative to many other materials, such as cast iron and concrete. It is characterized by high corrosion resistance, resulting in good erosion/corrosion. For the erosion/corrosion test, commercially available GRPs were used, which are frequently utilized for oil field wastewater in harsh environments.
View Article and Find Full Text PDFIn the present work, three different woven composite laminates were fabricated using the hand lay-up method. The woven reinforcement fibres were carbon fibres (CFRP), glass fibres (GFRP-W) and (GFRP-R) in combination with epoxy resin. Then, the central notch specimen tensile test (CNT) was used to measure the fracture toughness and the corresponding surface release energy (GIC).
View Article and Find Full Text PDFIn this paper, the mechanical properties of fiber-reinforced epoxy laminates are experimentally tested. The relaxation behavior of carbon and glass fiber composite laminates is investigated at room temperature. In addition, the impact strength under drop-weight loading is measured.
View Article and Find Full Text PDFReinforced composite materials have many applications in the aerospace, marine, and petroleum industries. Glass fiber-reinforced pipes are of considerable importance as pressurized vessels, infrastructure materials, and petroleum wastewater pipelines. The stress intensity factor due to through-thickness discontinuities is a major parameter in fracture mechanics to understand the failure mechanisms in glass fiber-composite pipes.
View Article and Find Full Text PDFGlass fiber reinforced polymer (GFRP) composite laminates are considered the key material in many industries such as the infrastructure industries and the aerospace sector, and in building structures due to their superior specific strength and lightweight properties. The prediction of specimens' nominal strength with open holes is still an attractive and questionable field of study. The specimen size effect is referred to its strength degradation due to the presence of holes when specimen geometry gets scaled.
View Article and Find Full Text PDF