Cloud data centers present a challenge to environmental sustainability because of their significant energy consumption. Additionally, performance degradation resulting from energy management solutions, such as virtual machine (VM) consolidation, impacts service level agreements (SLAs) between cloud service providers and users. Thus, to achieve a balance between efficient energy consumption and avoiding SLA violations, we propose a novel VM consolidation algorithm.
View Article and Find Full Text PDFWireless Sensor Networks (WSNs) consist of small, multifunctional nodes distributed across various locations to monitor and record parameters. These nodes store data and transmit signals for further processing, forming a crucial topic of study. Monitoring the network's status in WSN applications using clustering systems is essential.
View Article and Find Full Text PDFInternet of Things (IoT) is rapidly growing and contributing drastically to improve the quality of life. Immense technological innovations and growth is a key factor in IoT advancements. Readily available low cost IoT hardware is essential for continuous adaptation of IoT.
View Article and Find Full Text PDFDue to the limited availability of battery power of the acoustic node, an efficient utilization is desired. Additionally, the aquatic environment is harsh; therefore, the battery cannot be replaced, which leaves the network prone to sudden failures. Thus, an efficient node battery dissipation is required to prolong the network lifespan and optimize the available resources.
View Article and Find Full Text PDFSparse node deployment and dynamic network topology in underwater wireless sensor networks (UWSNs) result in void hole problem. In this paper, we present two interference-aware routing protocols for UWSNs (Intar: interference-aware routing; and Re-Intar: reliable and interference-aware routing). In proposed protocols, we use sender based approach to avoid the void hole.
View Article and Find Full Text PDFWireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW.
View Article and Find Full Text PDFWireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications.
View Article and Find Full Text PDF