Significance: Fiber-optic extended-wavelength diffuse reflectance spectroscopy (EWDRS) using both visible/near-infrared and shortwave-infrared detectors enables improved detection of spectral absorbances arising from lipids, water, and collagen and has demonstrated promise in a variety of applications, including detection of nerves and neurovascular bundles (NVB). Development of future applications of EWDRS for nerve detection could benefit from the use of model-based analyses including Monte Carlo (MC) simulations and evaluation of agreement between model systems and empirical measurements.
Aim: The aim of this work is to characterize agreement between EWDRS measurements and simulations and inform future applications of model-based studies of nerve-detecting applications.
Newborns in high-income countries are routinely screened for neonatal jaundice using transcutaneous bilirubinometery (TcB). In low-and middle-income countries, TcB is not widely used due to a lack of availability; however, mobile-phone approaches for TcB could help expand screening opportunities. We developed a mobile phone-based approach for TcB and validated the method with a 37 patient multi-ethnic pilot study.
View Article and Find Full Text PDF