enters into beneficial symbiotic interactions with species of legumes. Bacterial exopolysaccharides play critical signaling roles in infection thread initiation and growth during the early stages of root nodule formation. After endocytosis of by plant cells in the developing nodule, plant-derived nodule-specific cysteine-rich (NCR) peptides mediate terminal differentiation of the bacteria into nitrogen-fixing bacteroids.
View Article and Find Full Text PDFThe model legume species expresses more than 700 nodule-specific cysteine-rich (NCR) signaling peptides that mediate the differentiation of bacteria into nitrogen-fixing bacteroids. NCR peptides are essential for a successful symbiosis in legume plants of the inverted-repeat-lacking clade (IRLC) and show similarity to mammalian defensins. In addition to signaling functions, many NCR peptides exhibit antimicrobial activity and Bacterial resistance to these antimicrobial activities is likely to be important for symbiosis.
View Article and Find Full Text PDFPseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
Interactions of rhizobia with legumes establish the chronic intracellular infection that underlies symbiosis. Within nodules of inverted repeat-lacking clade (IRLC) legumes, rhizobia differentiate into nitrogen-fixing bacteroids. This terminal differentiation is driven by host nodule-specific cysteine-rich (NCR) peptides that orchestrate the adaptation of free-living bacteria into intracellular residents.
View Article and Find Full Text PDFConsiderable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered "amorphous," and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage.
View Article and Find Full Text PDFLegume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties.
View Article and Find Full Text PDF12-Oxophytodienoic acid (OPDA), a well-known phytohormone of the jasmonate family, has a reactive α,β-unsaturated carbonyl structure which easily adds cellular nucleophiles (Michael addition), making OPDA potentially toxic for herbivores. The glutathione S-transferase GST16 inactivates 12-OPDA in the insect gut by isomerization to inactive iso-OPDA. Quantitative tissue expression analysis showed that HarmGST16 transcripts were present in most larval tissues, including those of the midgut, fatbody and Malpighian tubules.
View Article and Find Full Text PDFPeroxisomes are subcellular organelles of vital importance. They are ubiquitous, have a single membrane and execute numerous metabolic reactions in plants. Plant peroxisomes are multifaceted and have diverse functions including, but not limited to, photomorphogenesis, lipid metabolism, photorespiration, nitrogen metabolism, detoxification and plant biotic interactions.
View Article and Find Full Text PDFChemical probes have great potential for identifying functional residues in proteins in crude proteomes. Here we studied labeling sites of chemical probes based on sulfonyl fluorides (SFs) on plant and animal proteomes. Besides serine proteases and many other proteins, SF-based probes label Tyr residues in glutathione transferases (GSTs).
View Article and Find Full Text PDFThe AvrPphB effector of Pseudomonas syringae is a papain-like protease that is injected into the host plant cell and cleaves specific kinases to disrupt immune signaling. Here, we used the unique substrate specificity of AvrPphB to generate a specific activity-based probe. This probe displays various AvrPphB isoforms in bacterial extracts, upon secretion and inside the host plant.
View Article and Find Full Text PDFRD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation.
View Article and Find Full Text PDF12-Oxophytodienoic acid (OPDA) is isomerized in the gut of herbivorous insects to tetrahydrodicranenone B (iso-OPDA). The transformation is achieved by a glutathione S-transferase present in the gut epithelium. Experiments with 9-[(2)H]-iso-OPDA demonstrated the complete retention of the deuterium atom in the product 11-[(2)H]-OPDA consistent with an intramolecular 1,3-hydrogen shift.
View Article and Find Full Text PDFSince the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans.
View Article and Find Full Text PDFThe interaction between the fungal pathogen Cladosporium fulvum and its host tomato (Solanum lycopersicum) is an ideal model to study suppression of extracellular host defenses by pathogens. Secretion of protease inhibitor AVR2 by C. fulvum during infection suggests that tomato papain-like cysteine proteases (PLCPs) are part of the tomato defense response.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2007
Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe2+-form of the entrapped protein is found to bind molecular oxygen more strongly than the native protein.
View Article and Find Full Text PDF