The NAC (NAM, ATAF and CUC) proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. Our analysis led to the identification of 168 NAC genes in durum wheat, including nine putative membrane-bound TFs and 48 homeologous genes pairs. Phylogenetic analyses of TtNACs along with their Arabidopsis, grape, barley and rice counterparts divided these proteins into 8 phylogenetic groups and allowed the identification of TtNAC-A7, TtNAC-B35, TtNAC-A68, TtNAC-B69 and TtNAC-A43 as homologs of OsNAC1, OsNAC8, OsNTL2, OsNTL5 and ANAC025/NTL14, respectively.
View Article and Find Full Text PDFLate embryogenesis abundant (LEA) proteins were first described as accumulating late in plant seed development. They were also shown to be involved in plant responses to environmental stress and as well as in bacteria, yeast and invertebrates. They are known to play crucial roles in dehydration tolerance.
View Article and Find Full Text PDFNAC domain transcription factors regulate many developmental processes and stress responses in plants and vary widely in number and family structure. We analysed the characteristics and evolution of the NAC gene family of Eucalyptus grandis, a fast-growing forest tree in the rosid order Myrtales. NAC domain genes identified in the E.
View Article and Find Full Text PDFBrittle leaf disease or Maladie de la Feuille Cassante (MFC) is a lethal disorder of date palm that has assumed epidemic proportions in the oases of Tunisia and Algeria. No pathogen could ever be associated with the disease, while leaflets of affected palms have been previously shown to be deficient in manganese. The work reported here aims to understand the biochemical basis of the date palm response to this disorder.
View Article and Find Full Text PDFThe presence of lignin in secondary cell walls (SCW) is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors (TFs) dictating lignin profiles in the model plant Arabidopsis.
View Article and Find Full Text PDFProteomics analysis has been performed in leaf tissue from field date palm trees showing the brittle leaf disease (BLD) or maladie des feuilles cassantes, the main causal agent of the date palm decline in south Tunisia. To study the evolution of the disease, proteins from healthy and affected leaves taken at three disease stages (S1, S2 and S3) were trichloroacetic acid acetone extracted and subjected to two-dimensional gel electrophoresis (5-8 pH range). Statistical analysis showed that the protein abundance profile is different enough to differentiate the affected leaves from the healthy ones.
View Article and Find Full Text PDFIn Tunisia, date orchards are being decimated by a disease called brittle leaf disease of unknown origin. Previous studies reported that affected soils, roots and leaves were manganese deficient. In this study, we investigated the biochemical and molecular response of MFC-affected date palms to the oxidative stress generated by manganese deficiency.
View Article and Find Full Text PDFA simple and efficient method was described here for the isolation of high-quality RNA from date palm leaves affected with Brittle Leaf Disease (BLD) and containing high amount of phenolic compounds. The procedure was based on the use of a non-ionic detergent Nonidet-P40 (NP-40), Polyvinylpyrrolidone (PVP), and beta-mercaptoethanol in the extraction buffer in order to isolate cytoplasmic RNA and to prevent the oxidation of phenolic compounds. This method allowed the isolation of intact RNA, suitable for cDNA synthesis and library construction.
View Article and Find Full Text PDF