We report here the rhodium catalyzed reductive hydroformylation of methyl 10-undecenoate. Our approach is based on an ionic liquid/heptane biphasic system associated with commercially available trialkylamines. The effects of various reaction parameters such as amine type, amine amount, temperature, syngas pressure and composition were studied in order to minimize the rhodium leaching and increase the production of primary alcohols.
View Article and Find Full Text PDFDuring last few decades, oligochitosan (OCS)-coated nanoparticles have received great interest for nanomedicine, food and environment applications. However, their current formulation techniques are time-consuming with multi-synthesis/purification steps and sometimes require the use of organic solvents, crosslinkers and surfactants. Herein, we report a facile and rapid one-pot synthesis of OCS-based nanoparticles using photo-initiated reversible addition fragmentation chain transfer polymerization-induced self-assembly (Photo-RAFT PISA) under UV-irradiation at room temperature.
View Article and Find Full Text PDFTwo eco-friendly and highly efficient adsorbents, namely brushite-chitosan (DCPD-CS), and monetite-chitosan (DCPA-CS) composites were synthesized via a simple and low-cost method and used for tetracycline (TTC) removal. The removal behavior of TTC onto the composite particles was studied considering various parameters, including contact time, pollutant concentration, and pH. The maximum TTC adsorption capacity was 138.
View Article and Find Full Text PDFPolyurethane foams (PUFs) are a significant group of polymeric foam materials. Thanks to their outstanding mechanical, chemical, and physical properties, they are implemented successfully in a wide range of applications. Conventionally, PUFs are obtained in polyaddition reactions between polyols, diisoycyanate, and water to get a CO foaming agent.
View Article and Find Full Text PDFMechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H(ZrTi)O nanowires (HZTO-nw) and BaCaZrTiO multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs.
View Article and Find Full Text PDFThe present study highlights the olive mill wastewater (OMW) treatment characteristics through a sono-heterogeneous Fenton process using new designed [GTA-(PDA-g-DAC) @FeO] and characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetic properties measurements, and point of zero charge (pH pzc) analysis. A preliminary removal study showed significant degradation efficiency (75%) occurred combining the magnetic synthesized catalyst [GTA-(PDA-g-DAC)@Fe3O4] ([catalyst] = 2 g/L) with US /HO and maintaining 500WL ultrasonic power (US). The values obtained by US only were (13%), HO/US (18%), US/FeO (28%), and US /FeO/HO(35%).
View Article and Find Full Text PDFPoly(hydroxyurethanes) (PHUs) have been suggested as isocyanate-free, low-toxicity alternatives to polyurethanes (PUs). However, PHUs present low mechanical properties due to the presence of side reactions that limit the production of high-molar mass polymers. Here, we present the synthesis under mild conditions and atmospheric pressure of bi-cyclic carbonate monomer for the production of PHU nanocomposites with good physical properties.
View Article and Find Full Text PDFBiobased waterborne latexes were synthesized by miniemulsion radical copolymerization of a biosourced β-myrcene (My) terpenic monomer and styrene (S). Biobased amphiphilic copolymers were designed to act as stabilizers of the initial monomer droplets and the polymer colloids dispersed in the water phase. Two types of hydrophilic polymer backbones were hydrophobically modified by terpene molecules to synthesize two series of amphiphilic copolymers with various degrees of substitution.
View Article and Find Full Text PDFFoam products are one of the largest markets for polyurethane (PU) and are heavily used in many sectors. However, current PU formulations use highly toxic and environmentally unfriendly production processes. Meanwhile, the increasing environmental concerns and regulations are intensifying the research into green and non-toxic products.
View Article and Find Full Text PDFMarine polysaccharides are believed to be promising wound-dressing nanomaterials because of their biocompatibility, antibacterial and hemostatic activity, and ability to easily shape into transparent films, hydrogels, and porous foams that can provide a moist micro-environment and adsorb exudates. Current efforts are firmly focused on the preparation of novel polysaccharide-derived nanomaterials functionalized with chemical objects to meet the mechanical and biological requirements of ideal wound healing systems. In this contribution, we investigated the characteristics of six different cellulose-filled chitosan transparent films as potential factors that could help to accelerate wound healing.
View Article and Find Full Text PDFWe developed a new hybrid material resulting from an innovative supramolecular tripartite association between an ionic liquid covalently immobilized on primary β-cyclodextrins rim and an anionic water-soluble polymer. Two hydrophilic ternary complexes based on native and permethylated β-cyclodextrins substituted with an ionic liquid and immobilized on poly(styrene sulfonate) (CD-ILPSS and CD(OMe)ILPSS) were obtained by simple dialysis with a cyclodextrin maximal grafting rate of 25% and 20% on the polymer, respectively. These polyelectrolytes are based on electrostatic interactions between the opposite charges of the imidazolium cation of the ionic liquid and the poly(styrene sulfonate) anion.
View Article and Find Full Text PDFA composite based on hydroxyapatite (HA) and chitosan (CS) combined with ciprofloxacin (CIP) was formulated by the solid-liquid mixing method. The optimization of the solid to the liquid ratio and the use of chitosan in a small amount (≤5 wt%) promoted the preparation of stable and rigid monoliths. A synergistic effect of CS and CIP contents on the compressive strength of the CIP-loaded composite was evidenced.
View Article and Find Full Text PDFThe exploitation of beidellite clay (BDT), used as a nanofiller in the preparation of poly(butylene succinate) (PBS)/organoclay biodegradable nanocomposites, was investigated. A series of bionanocomposites with various loadings of the organoclay (3CTA-BDT) were prepared by polycondensation reaction between succinic anhydride (SuAh) and 1,4-butanediol (1,4-BD) at atmospheric pressure in refluxing decalin with azeotropic removal of water, and the reaction was catalyzed by non-toxic bismuth chloride (BiCl). X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that 3CTA-BDT was likely exfoliated and well dispersed in PBS matrix.
View Article and Find Full Text PDFThis paper deals with the preparation of novel magnetic materials made from tetraaza macrocyclic Schiff base bacterial cellulose ligands with magnetite nanoparticles (FeONPs) through a multi-step procedure for antimicrobial and cytotoxic activities and chemotherapy in cancer treatment. First, the 2,3-dialdehyde bacterial cellulose (DABC) was chemically modified by ethylenediamine (EDA) and benzil (Bzl) in the presence of ferrous ions. Then, the magnetite nanoparticles (FeONPs) was produced inside the complex [Fe(DABC-EDA-Bzl)Cl] through a co-precipitation method.
View Article and Find Full Text PDFBaCaZrTiO (BCZT) relaxor ferroelectric ceramics exhibit enhanced energy storage and electrocaloric performances due to their excellent dielectric and ferroelectric properties. In this study, the temperature-dependence of the structural and dielectric properties, as well as the field and temperature-dependence of the energy storage and the electrocaloric properties in BCZT ceramics elaborated at low-temperature hydrothermal processing are investigated. X-ray diffraction and Raman spectroscopy results confirmed the ferroelectric-paraelectric phase transition in the BCZT ceramic.
View Article and Find Full Text PDFThe ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) using phosphorus pentoxide (PO) as a metal-free catalyst and isopropanol (iPrOH) as initiator resulted in the preparation of poly(ε-caprolactone) with narrow weight distribution. NMR spectroscopy analyses of the prepared PCL indicated the presence of the initiator residue at the end of the polymer chain, implying the occurrence of the ε-CL-catalysis ROP through a monomer activation mechanism. Kinetic experiments confirmed the controlled/living nature of ε-CL ring-opening catalyzed by phosphorus pentoxide.
View Article and Find Full Text PDFThe coating of fertilizers by polymers is one of the most efficient tools for their slow and control release into soil. This strategy avoids excessive use of the fertilizers and increases their availability to the crops needs. In the present paper, hydro-soluble diammonium phosphates (DAP) fertilizer was double coated following the dip-coating process by chitosan-clay composites as inner coating and paraffin wax as an outer coating.
View Article and Find Full Text PDFThis study reports the grafting of poly(ε-caprolactone) (PCL) on guar gum (GG) by in-situ ring-opening polymerization using tetra(phenylethynyl)tin (Sn(C≡CPh)) as catalyst. The hydroxyl groups of guar gum act as initiators for ε-caprolactone ring-opening polymerization and the resulting poly(ε-caprolactone) binds covalently to the polysaccharide. The highest stability of Sn(C≡CPh) allows the reaction in open-air, thereby reducing the cost of the synthesis and provides polymers with high molar mass.
View Article and Find Full Text PDFRevealed by an integrated electrogravimetric and viscoelastic method, slightly electrochemically reduced graphene oxide (ERGO) presents an anion preference for charge storage and delivery, while with the progressive removal of oxygen functionalities on its basal planes, cations begin to predominate in charge compensation. This "anion-to-cation" evolution in neutral aqueous media can not only affect the electrochemical charge storage, but also play an important role in electrode's viscoelasticity. It was demonstrated that oxygen functionalities could modify the interactions between graphene layers and even contribute to pseudocapacitances.
View Article and Find Full Text PDFIsocyanides, isomers of the cyanides detected in the interstellar medium, are also possible components of this medium. The infrared spectra (5000-500 cm(-1) ) of gaseous vinyl isocyanide, allenyl isocyanide, and propargyl isocyanide have been recorded at 0.1 cm(-1) resolution.
View Article and Find Full Text PDFIn this work, highly porous nanopaper, i.e., sheets of papers made from non-aggregated nanofibrillated cellulose (NFC), have been surface-grafted with poly(ε-caprolactone) (PCL) by surface-initiated ring-opening polymerization (SI-ROP).
View Article and Find Full Text PDFSugar end-capped poly-D,L-lactide (SPDLA) polymers were investigated as a potential release controlling excipient in oral sustained release matrix tablets. The SPDLA polymers were obtained by a catalytic ring-opening polymerization technique using methyl alpha-D-gluco-pyranoside as a multifunctional initiator in the polymerization. Polymers of different molecular weights were synthesized by varying molar ratios of monomer/catalyst.
View Article and Find Full Text PDFMonoalkyltrialkynyl- and dialkyldialkynyltin compounds can be selectively synthesized by transmetalation of tetraalkynyltin compounds with Grignard reagents; an example is given in Equation (1). This reaction provides a route to mono- and dialkyltin compounds that avoids the use of strongly electrophilic reagents. The labile tin-alkynyl bonds allow the transmetalation products to be converted into alkyltin oxides, chlorides, and alkoxides.
View Article and Find Full Text PDF