The paradigm shift in dye sensitized solar cells (DSCs) - towards donor- π bridge-acceptor (D-π-A) dyes - increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the donor-chromophore-anchor (D-C-A) motif were investigated computationally, spectroscopically, and fabricated by systematic evaluation of finished photovoltaic cells. In all cases, the [Co(bpy)3](3+/2+) redox-shuttle afforded superior performance compared to I3(-)/I(-).
View Article and Find Full Text PDFWe report a facile synthetic route to obtain functionalized quaterpyridine ligand and its trans-dithiocyanato ruthenium complex, based on a microwave-assisted procedure. The ruthenium complex has been purified using a silica chromatographic column by protecting carboxylic acid groups as iso-butyl ester, which are subsequently hydrolyzed. The highly pure complex exhibits panchromatic response throughout the visible region.
View Article and Find Full Text PDFRegeneration and recombination kinetics was investigated for dye-sensitized solar cells (DSCs) using a series of different cobalt polypyridine redox couples, with redox potentials ranging between 0.34 and 1.20 V vs.
View Article and Find Full Text PDFWe report a combined experimental and theoretical study on the origin of the different open circuit potentials observed in dye-sensitized solar cells using Ru(II)-polypyridyl homoleptic and heteroleptic sensitizers. We have measured the photovoltaic data of different sensitizers and used DFT calculations to analyze the electronic structure of dye-sensitized TiO(2) nanoparticles. Heteroleptic sensitizers adsorb onto TiO(2) via a single bipyridine, leading to a TiO(2) conduction band downshift and overall reduction of the cell open circuit potential.
View Article and Find Full Text PDFWe report a combined experimental and theoretical study on cationic Ir(III) complexes for OLED applications and describe a strategy to tune the phosphorescence wavelength and to enhance the emission quantum yields for this class of compounds. This is achieved by modulating the electronic structure and the excited states of the complexes by selective ligand functionalization. In particular, we report the synthesis, electrochemical characterization, and photophysical properties of a new cationic Ir(III) complex, [Ir(2,4-difluorophenylpyridine)2(4,4'-dimethylamino-2,2'-bipyridine)](PF(6)) (N969), and compare the results with those reported for the analogous [Ir(2-phenylpyridine)2(4,4'-dimethylamino-2,2'-bipyridine)](PF(6)) (N926) and for the prototype [Ir(2-phenylpyridine)2(4,4'-tert-butyl-2,2'-bipyridine)](PF(6)) complex, hereafter labeled N925.
View Article and Find Full Text PDF