Epidemiological and laboratory studies link polychlorinated biphenyls and their metabolites to adverse neurodevelopmental outcomes. Several neurotoxic PCB congeners are chiral and undergo enantiomeric enrichment in mammalian species, which may modulate PCB developmental neurotoxicity. This study measures levels and enantiomeric enrichment of PCB 95 and its hydroxylated metabolites (OH-PCBs) in adult female C57Bl/6 mice following subchronic exposure to racemic PCB 95.
View Article and Find Full Text PDFChanges in the enantiomeric composition of polychlorinated biphenyls (PCBs) can not only be used to investigate environmental and biological transport processes, but also have human health implications because of enantiospecific adverse health effects. To further understand differences in the disposition of PCB atropisomers in vivo, the present study investigates the toxicokinetics of PCB atropisomers in female C57Bl/6 mice after oral administration of a mixture of several PCBs, including racemic PCBs 91, 95, 132, 136, 149, 174, and 176. On the Chirasil-Dex column, an enrichment of the second eluting atropisomers was generally observed, whereas only the first eluting atropisomers E1-PCB 95, (-)-PCB 132, and (-)-PCB 149 had half-lives that were distinctively longer compared to the second eluting atropisomers.
View Article and Find Full Text PDF