The heme enzyme indoleamine 2,3-dioxygenase (IDO) is a key regulator of immune responses through catalyzing l-tryptophan (l-Trp) oxidation. Here, we show that hydrogen peroxide (H(2)O(2)) activates the peroxidase function of IDO to induce protein oxidation and inhibit dioxygenase activity. Exposure of IDO-expressing cells or recombinant human IDO (rIDO) to H(2)O(2) inhibited dioxygenase activity in a manner abrogated by l-Trp.
View Article and Find Full Text PDFThe heme enzyme indoleamine 2,3-dioxygenase (IDO) plays an important immune regulatory role by catalyzing the oxidative degradation of l-tryptophan. Here we show that the selenezal drug ebselen is a potent IDO inhibitor. Exposure of human macrophages to ebselen inhibited IDO activity in a manner independent of changes in protein expression.
View Article and Find Full Text PDFThe heme protein indoleamine 2,3-dioxygenase (IDO) is induced by the proinflammatory cytokine interferon-gamma (IFNgamma) and plays an important role in the immune response by catalyzing the oxidative degradation of L-tryptophan (Trp) that contributes to immune suppression and tolerance. Here we examined the mechanism by which nitric oxide (NO) inhibits human IDO activity. Exposure of IFNgamma-stimulated human monocyte-derived macrophages (MDM) to NO donors had no material impact on IDO mRNA or protein expression, yet exposure of MDM or transfected COS-7 cells expressing active human IDO to NO donors resulted in reversible inhibition of IDO activity.
View Article and Find Full Text PDF