Publications by authors named "Mohammed F Daqaq"

We present the design and evaluation of a simple, compact and efficient electromagnetic energy harvesting tile that can be used to harness energy from footsteps. The proposed harvester incorporates a translational-rotational origami-inspired coupling mechanism to transform the axial loads exerted by human footsteps into a localized rotation of an electromagnetic generator. The coupling mechanism employs a non-rigid tunable Kresling spring, the restorative behaviour of which is tunable to maximize energy transduction from the applied load to the generator.

View Article and Find Full Text PDF

Although medical simulators have benefited from the use of haptics and virtual reality (VR) for decades, the former has become the bottleneck in producing a low-cost, compact, and accurate training experience. This is particularly the case for the inferior alveolar nerve block (IANB) procedure in dentistry, which is one of the most difficult motor skills to acquire. As existing works are still oversimplified or overcomplicated for practical deployment, we introduce an origami-based haptic syringe interface for IANB local anesthesia training.

View Article and Find Full Text PDF

The emergence of large language models has led to the development of powerful tools such as ChatGPT that can produce text indistinguishable from human-generated work. With the increasing accessibility of such technology, students across the globe may utilize it to help with their school work-a possibility that has sparked ample discussion on the integrity of student evaluation processes in the age of artificial intelligence (AI). To date, it is unclear how such tools perform compared to students on university-level courses across various disciplines.

View Article and Find Full Text PDF

Human space travel and exploration are of interest to both the industrial and scientific community. However, there are many adverse effects of spaceflight on human physiology. In particular, there is a lack of understanding of the extent to which microgravity affects the immune system.

View Article and Find Full Text PDF

Galloping is an aeroelastic instability which incites oscillatory motion of elastic structures when subjected to an incident flow. Because galloping is often detrimental to the integrity of the structure, many research studies have focused on investigating methodologies to suppress these oscillations. These include using passive energy sinks, altering the surface characteristics of the structure, actively changing the shape of the boundary layer through momentum injection and using feedback control algorithms.

View Article and Find Full Text PDF

Origami-inspired design has recently emerged as a major thrust area of research in the fields of science and engineering. One such design utilizes Kresling-pattern origami to construct nonlinear springs that can act as mechanical bit memory switches, wave guides, fluidic muscles, and vibration isolators. The main objective of this work is to characterize the static equilibria of such springs, their stability, and bifurcations as the geometric parameters of the Kresling pattern are varied.

View Article and Find Full Text PDF