In heart and skeletal muscle, enhanced contractile activity induces an increase in the uptake of glucose and long-chain fatty acids (LCFA) via an AMP-activated protein kinase (AMPK)-regulated mechanism. AMPK activation induces glucose uptake through translocation of glucose transporter 4 (GLUT4) from intracellular pools to the plasma membrane (PM). AMPK-mediated LCFA uptake has been suggested to be regulated by a similar translocation of the LCFA transporters CD36 and plasma membrane-associated fatty acid binding protein (FABPpm).
View Article and Find Full Text PDFEnhanced contractile activity increases cardiac long-chain fatty acid (LCFA) uptake via translocation of CD36 to the sarcolemma, similarly to increase in glucose uptake via GLUT4 translocation. AMP-activated protein kinase (AMPK) is assumed to mediate contraction-induced LCFA utilization. However, which catalytic isoform (AMPKalpha1 versus AMPKalpha2) is involved, is unknown.
View Article and Find Full Text PDFContraction-induced glucose uptake is only partly mediated by AMPK activation. We examined whether the diacylglycerol-sensitive protein kinase D (PKD; also known as novel PKC isoform mu) is also involved in the regulation of glucose uptake in the contracting heart. As an experimental model, we used suspensions of cardiac myocytes, which were electrically stimulated to contract or treated with the contraction-mimicking agent oligomycin.
View Article and Find Full Text PDFThe protein thiol-modifying agent arsenite, a potent activator of stress signaling, was used to examine the involvement of MAPKs in the regulation of cardiac substrate uptake. Arsenite strongly induced p38 MAPK phosphorylation in isolated rat cardiac myocytes but also moderately enhanced phosphorylation of p42/44 ERK and p70 S6K. At the level of cardiomyocytic substrate use, arsenite enhanced glucose uptake dose dependently up to 5.
View Article and Find Full Text PDFFamilial combined hyperlipidemia (FCHL) shows many features of the metabolic syndrome. The strong genetic component makes it an excellent model to study the genetic background of metabolic syndrome and insulin resistance. Adipose tissue is believed to contribute to, or even underlie, the FCHL phenotype and is an interesting target tissue for gene expression studies.
View Article and Find Full Text PDF