In this paper, we investigated and evaluated various machine learning-based approaches for automatically detecting wheezing sounds. We conducted a comprehensive comparison of these proposed systems, assessing their classification performance through metrics such as Sensitivity, Specificity, and Accuracy. The main approach to developing a machine learning-based system for classifying respiratory sounds involved the combination of a technique for extracting features from an unknown input sound with a classification method to determine its belonging class.
View Article and Find Full Text PDFMonitoring blue and fin whales summering in the St. Lawrence Estuary with passive acoustics requires call recognition algorithms that can cope with the heavy shipping noise of the St. Lawrence Seaway and with multipath propagation characteristics that generate overlapping copies of the calls.
View Article and Find Full Text PDFComput Biol Med
September 2009
In this paper, we present the pattern recognition methods proposed to classify respiratory sounds into normal and wheeze classes. We evaluate and compare the feature extraction techniques based on Fourier transform, linear predictive coding, wavelet transform and Mel-frequency cepstral coefficients (MFCC) in combination with the classification methods based on vector quantization, Gaussian mixture models (GMM) and artificial neural networks, using receiver operating characteristic curves. We propose the use of an optimized threshold to discriminate the wheezing class from the normal one.
View Article and Find Full Text PDF