Publications by authors named "Mohammed Alimul Islam"

The goal of the study was to develop a specific, sensitive, and cost-effective molecular RT-PCR diagnostic assay for the rapid and simultaneous detection of the serotypes of dengue virus (DENV) and Chikungunya virus (CHIKV) from sera of suspected febrile patients. A single-tube, single-step multiplex RT-PCR (mRT-PCR) assay was designed for the detection of viral genomes from clinical and field samples. Specificity and sensitivity of the mRT-PCR assay were evaluated against six different combinations using two reverse transcriptases (AMV-RT and RT-Ace) and three DNA polymerases (LA-Taq, rTaq, and Tth).

View Article and Find Full Text PDF

Dengue virus (DENV) causes fever and severe haemorrhagic symptoms in humans. The DEN2 16681 strain, derived from a dengue haemorrhagic fever patient, has been widely used in studies related to DENV pathogenesis, such as mouse and non-human primate haemorrhagic models and human vascular endothelial-cell permeability. To clarify the entry mechanism of the 16681 strain, we characterized a novel cell receptor for this strain.

View Article and Find Full Text PDF

During the febrile illness epidemic in Bangladesh in 2002, 58 people died out of the 6,132 affected. Two hundred hospitalized patients were analyzed clinically, serologically and virologically to determine the features of this dengue infection. Among the 10- to 70-year-old age group of the 200 clinically suspected dengue patients, 100 (50%) were confirmed as dengue cases by virus isolation and dengue IgM-capture ELISA.

View Article and Find Full Text PDF

The development and validation of a one-step, real-time, and quantitative dengue virus serotype-specific reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay targeting the 3' noncoding region for the rapid detection and differentiation of dengue virus serotypes are reported. The RT-LAMP assay is very simple and rapid, wherein the amplification can be obtained in 30 min under isothermal conditions at 63 degrees C by employing a set of four serotype-specific primer mixtures through real-time monitoring in an inexpensive turbidimeter. The evaluation of the RT-LAMP assay for use for clinical diagnosis with a limited number of patient serum samples, confirmed to be infected with each serotype, revealed a higher sensitivity by picking up 100% samples as positive, whereas 87% and 81% of the samples were positive by reverse transcription-PCR and virus isolation, respectively.

View Article and Find Full Text PDF