Natural coumarins and isocoumarins show significant therapeutic potential against cancer in preclinical studies by targeting multiple pathways and processes. These compounds influence several critical cellular processes, such as apoptosis, autophagy, and cell cycle regulation, which are pivotal in cancer development and progression. Their capability to target multiple signalling pathways provides a strategic advantage over single-target therapies, which are often limited by drug resistance.
View Article and Find Full Text PDFMXenes, a two-dimensional (2D) material, exhibit excellent optical, electrical, chemical, mechanical, and electrochemical properties. Titanium-based MXene (Ti-MXene) has been extensively studied and serves as the foundation for 2D MXenes. However, other transition metals possess the potential to offer excellent properties in various applications.
View Article and Find Full Text PDFAgriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a globally prevalent and hazardous disorder that is responsible for inducing several persistent and potentially fatal liver diseases. Current treatment strategies offer limited efficacy, often accompanied by severe and debilitating adverse effects. Consequently, there is an urgent and compelling need to develop novel therapeutic interventions that can provide maximum efficacy in combating HCV while minimizing the burden of adverse effects on patients.
View Article and Find Full Text PDFBeing an important dietary component, omega-3 (ω-3) fatty acids are essential polyunsaturated fatty acids, which play a crucial role in the normal growth and development of an individual. ω-3 fatty acids have been reported to possess therapeutic activities against several diseases, including cardiovascular, neurological, cancer, etc. Due to the unsaturation, ω-3 fatty acids are highly reactive and prone to oxidation, which is the biggest hurdle in their administration, as oxidation produces a foul smell and reduces their therapeutic efficacy.
View Article and Find Full Text PDFCO sequestration into coalbed seams is one of the practical routes for mitigating CO emissions. The adsorption mechanisms of CO onto Malaysian coals, however, are not yet investigated. In this research CO adsorption isotherms were first performed on dry and wet Mukah-Balingian coal samples at temperatures ranging from 300 to 348 K and pressures up to 6 MPa using volumetric technique.
View Article and Find Full Text PDFCancer nano-therapeutics are rapidly evolving and are often used to overcome a number of concerns with traditional drug delivery methods, including non-specific drug targeting and distribution, low oral bioavailability, and poor hydrophilicity. Modern nano-based targeting techniques have been developed as a result of advances in nano vehicle engineering and materials science, which may bring people with cancer a new hope. Clinical trials have been authorized for a number of medicinal nanocarriers.
View Article and Find Full Text PDFThe massive use of non-renewable energy resources by humankind to fulfill their energy demands is causing severe environmental issues. Photocatalysis is considered one of the potential solutions for a clean and sustainable future because of its cleanliness, inexhaustibility, efficiency, and cost-effectiveness. Significant efforts have been made to design highly proficient photocatalyst materials for various applications such as water pollutant degradation, water splitting, CO reduction, and nitrogen fixation.
View Article and Find Full Text PDFTwo-terminal, non-volatile memory devices are the fundamental building blocks of memory-storage devices to store the required information, but their lack of flexibility limits their potential for biological applications. After the discovery of two-dimensional (2D) materials, flexible memory devices are easy to build, because of their flexible nature. Here, we report on our flexible resistive-switching devices, composed of a bilayer tin-oxide/tungsten-ditelluride (SnO/WTe) heterostructure sandwiched between Ag (top) and Au (bottom) metal electrodes over a flexible PET substrate.
View Article and Find Full Text PDF