DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks.
View Article and Find Full Text PDFFinanc Res Lett
January 2021
We examine how the Australian stock market responded to the uncertainties created by the COVID-19 pandemic and whether the stimulus package offered by the Government helped restore confidence in the market. This study finds a negative stock market reaction to the pandemic announcement, however, among two stimulus packages related announcements, the market reacted positively only to "JobKeeper" package. The cross-sectional results suggest that the smallest, least profitable and value portfolios suffered more during the pandemic.
View Article and Find Full Text PDFThe replication of DNA is initiated at particular sites on the genome called replication origins (ROs). Understanding the constraints that regulate the distribution of ROs across different organisms is fundamental for quantifying the degree of replication errors and their downstream consequences. Using a simple probabilistic model, we generate a set of predictions on the extreme sensitivity of error rates to the distribution of ROs, and how this distribution must therefore be tuned for genomes of vastly different sizes.
View Article and Find Full Text PDFTo prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are "licensed" by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin-a "double fork stall" (DFS)-replication cannot be completed by conventional means.
View Article and Find Full Text PDFRecent developments in quantitative image analysis allow us to interrogate confocal microscopy images to answer biological questions. Clumped and layered cell nuclei and cytoplasm in confocal images challenges the ability to identify subcellular compartments. To date, there is no perfect image analysis method to identify cytoskeletal changes in confocal images.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.