This research paper investigates discrete predator-prey dynamics with two logistic maps. The study extensively examines various aspects of the system's behavior. Firstly, it thoroughly investigates the existence and stability of fixed points within the system.
View Article and Find Full Text PDFIn this study, we investigate the dynamics of a discrete-time with predator-prey system with a Holling-III type functional response model. The center manifold theorem and bifurcation theory are used to create existence conditions for flip bifurcations and Neimark-Sacker bifurcations. Bifurcation diagrams, maximum Lyapunov exponents, and phase portraits are examples of numerical simulations that not only show the soundness of theoretical analysis but also show complicated dynamical behaviors and biological processes.
View Article and Find Full Text PDFOsteoarthritis (OA) is a chronic degenerative joint disorder associated with degradation and decreased production of the extracellular matrix, eventually leading to cartilage destruction. Limited chondrocyte turnover, structural damage, and prevailing inflammatory milieu prevent efficient cartilage repair and restoration of joint function. In the present study, we evaluated the role of secreted cytokines, chemokines, and growth factors present in the culture supernatant obtained from an osteochondral model of cartilage differentiation using cartilage pellets (CP), bone marrow stem cells (BM-MSCs), and/or BM-MSCs + CP.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is a progressive joint disease characterized by gradual degradation of extracellular matrix (ECM) components in the cartilage and bone. The ECM of cartilage is a highly specified structure that is mainly composed of type II collagen and provides tensile strength to the tissue via aggrecan and proteoglycans. However, changes in the ECM composition and structure can lead to loss of collagen type II and network integrity.
View Article and Find Full Text PDF