Coronaviruses cause respiratory and intestinal infections in animals and humans. By the end of 2019, there was an epidemic of novel coronavirus (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses have a highly mutable genome that makes them genetically and phenotypically modifiable with a potential transmission to new host species.
View Article and Find Full Text PDFRecently, Egypt has experienced an increased incidence of rabbit hemorrhagic disease virus (RHDV) infection even among vaccinated rabbits. The present study estimates the emergence of RHDV in vaccinated (n = 10) and unvaccinated (n = 8) domestic rabbitries in Beheira and Kafr El-Sheikh provinces, Egypt, during the period 2018-2020. A total of 8 out of 18 (44.
View Article and Find Full Text PDFIdentification of avian infectious bronchitis virus (IBV) genotypes is essential for controlling infectious bronchitis (IB) disease, because vaccines that differ from the circulating strains might not provide efficient cross-protection. In Egypt, IBV strain typing is a difficult process, due to the widespread distribution of four genotype lineages (GI-13, GI-23, GI-1, and GI-16), which may contribute to IBV vaccination failure. In this study, we developed a multiplex real-time quantitative reverse transcription polymerase chain reaction (mRT-qPCR) assay that targets highly conserved areas of the S1 gene in order to detect classical (G1) and Egyptian variant II (G23) strains in allantoic fluids and clinical samples.
View Article and Find Full Text PDFUnlabelled: In the last few decades, frequent incidences of avian influenza (AI) H9N2 outbreaks have caused high mortality in poultry farms resulting in colossal economic losses in several countries. In Egypt, the co-infection of H9N2 with the infectious bronchitis virus (IBV) has been observed extensively during these outbreaks. However, the pathogenicity of H9N2 in these outbreaks remained controversial.
View Article and Find Full Text PDFInfectious bronchitis virus (IBV), a gamma-coronavirus, causes infectious bronchitis (IB), a major respiratory disease of chicken. Its high mutation rate in conjunction with recombination of the RNA genome constantly creates IBV variants that are difficult to control by currently available vaccines. In this study, we addressed the question whether small-scale holdings might harbor IBV variants that serve as a reservoir for newly emerging variants.
View Article and Find Full Text PDFIn 2016, the highly pathogenic avian influenza (HPAI) H5N8 virus was detected in wild birds for the first time in Egypt. In the present study, we identified the HPAI virus H5N8 of clade 2.3.
View Article and Find Full Text PDFA blocking latex agglutination test (b-LAT) developed in this study was evaluated for the detection of antibodies against chicken anemia virus (CAV) in chickens. Polystyrene latex beads were coupled with a neutralizing monoclonal antibody (mAb) to CAV (mAb-beads). When mAb-beads were mixed with antigens prepared from the lysate of MDCC-MSB1 cells infected with CAV, agglutination occurred.
View Article and Find Full Text PDFThis study reports on the genetic characterization of an avian influenza virus, subtype H12N3, isolated from an Eurasian green-winged teal (Anas crecca) in Japan in 2009. The entire genome sequence of the isolate was analyzed, and phylogenetic analyses were conducted to characterize the evolutionary history of the isolate. Phylogenetic analysis of the hemagglutinin and neuraminidase genes indicated that the virus belonged to the Eurasian-like avian lineage.
View Article and Find Full Text PDFIntroduction. Although many previous studies reported detection of chicken anemia virus (CAV) in Egypt since 1990, genomic characterization of this circulating CAV has not been published. In the present study, four nucleotide sequences of detected CAV were genetically characterized.
View Article and Find Full Text PDFThe aim of this study is to investigate the effects of the pesticides/polycyclic aromatic hydrocarbon mixture on aryl hydrocarbon receptor (AhR), p53 and ubiquitin mRNA level in haemocytes of Mya arenaria exposed to a mixture of chlorothalonil, mancozeb and benzo[a]pyrene (BaP) for 48 and 72 h. AhR, p53 and ubiquitin gene expression levels were quantified using quantitative Real-time PCR. For robust and accurate quantification of transcripts, suitable housekeeping genes were selected from four sets of ribosomal and elongation factors transcripts previously sequenced from Mya arenaria using geNorm open source software.
View Article and Find Full Text PDF