Motivation: Spatial domain identification is a very important problem in the field of spatial transcriptomics. The state-of-the-art solutions to this problem focus on unsupervised methods, as there is lack of data for a supervised learning formulation. The results obtained from these methods highlight significant opportunities for improvement.
View Article and Find Full Text PDFMotivation: Spatial transcriptomics (ST) can reveal the existence and extent of spatial variation of gene expression in complex tissues. Such analyses could help identify spatially localized processes underlying a tissue's function. Existing tools to detect spatially variable genes assume a constant noise variance across spatial locations.
View Article and Find Full Text PDFA common goal in the convolutional neural network (CNN) modeling of genomic data is to discover specific sequence motifs. Post hoc analysis methods aid in this task but are dependent on parameters whose optimal values are unclear and applying the discovered motifs to new genomic data is not straightforward. As an alternative, we propose to learn convolutions as multinomial distributions, thus streamlining interpretable motif discovery with CNN model fitting.
View Article and Find Full Text PDF