This study aims to provide an effective solution for the autonomous identification of dental implant brands through a deep learning-based computer diagnostic system. It also seeks to ascertain the system's potential in clinical practices and to offer a strategic framework for improving diagnosis and treatment processes in implantology. This study employed a total of 28 different deep learning models, including 18 convolutional neural network (CNN) models (VGG, ResNet, DenseNet, EfficientNet, RegNet, ConvNeXt) and 10 vision transformer models (Swin and Vision Transformer).
View Article and Find Full Text PDF