IEEE Trans Neural Netw Learn Syst
July 2024
The next crucial step in artificial intelligence involves integrating neural network models into embedded and mobile systems. This requires designing compact and energy-efficient neural network models in silicon for optimized performance. This article introduces a unified approach for enhancing the architectural efficiency of long short-term memory (LSTM) recurrent neural networks (RNNs).
View Article and Find Full Text PDFIn this article, we utilize Digital Twins (DT) with edge networks using blockchain technology for reliable real-time data processing and provide a secure, scalable solution to bridge the gap between physical edge networks and digital systems. Then, we suggest a Federated Learning (FL) framework for collaborative computing that runs on a blockchain and is powered by the DT edge network. This framework increases data privacy while enhancing system security and reliability.
View Article and Find Full Text PDF