We have recently shown that thioredoxin interacting protein (TXNIP) is required for VEGF-mediated VEGFR2 receptor activation and angiogenic signal. Retinas from TXNIP knockout mice (TKO) exhibited higher cellular antioxidant defense compared to wild type (WT). This study aimed to examine the impact of TXNIP deletion on hyperoxia-induced vaso-obliteration in ischemic retinopathy.
View Article and Find Full Text PDFProliferative diabetic retinopathy (PDR) is the leading cause of blindness in working age Americans. We demonstrated that diabetes disturbs the homeostasis of nerve growth factor (NGF) resulting in accumulation of its precursor proNGF. Increases in proNGF were positively correlated with progression of diabetic retinopathy, having the highest level in ocular fluids from PDR patients compared to nondiabetic patients.
View Article and Find Full Text PDFAims/hypothesis: Diabetic retinopathy is characterised by early blood-retina barrier (BRB) breakdown and neurodegeneration. Diabetes causes imbalance of nerve growth factor (NGF), leading to accumulation of the NGF precursor (proNGF), as well as the NGF receptor, p75 neurotrophin receptor (p75(NTR)), suggesting a possible pathological role of the proNGF-p75(NTR) axis in the diabetic retina. To date, the role of this axis in diabetes-induced retinal inflammation and BRB breakdown has not been explored.
View Article and Find Full Text PDFAims: Thioredoxin-interacting protein (TXNIP) contributes to cellular redox-state homeostasis via binding and inhibiting thioredoxin (TRX). Increasing evidence suggests that cellular redox homeostasis regulates vascular endothelial growth factor (VEGF)-mediated signaling. This study aims to examine the redox-dependant role of TXNIP in regulating VEGF-mediated S-glutathionylation and angiogenic signaling.
View Article and Find Full Text PDFOur previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotocin or stably express cleavage-resistant proNGF plasmid.
View Article and Find Full Text PDFPurpose: Neurotrophins, including nerve growth factor (NGF), are secreted by glia as a pro-form (proNGF) that is normally cleaved into the mature ligand. Increases of proNGF has been well documented in retinal neurodegenerative diseases. Since systemic overexpression of proNGF exhibits embryonic lethality, we aimed to establish a model that specifically and stably overexpresses a cleavage-resistant mutant of proNGF (proNGF123) plasmid in the retina using electroporation.
View Article and Find Full Text PDFAlthough promising, the ability to regulate angiogenesis through delivery of VEGF remains an unrealized goal. We have shown previously that physiological levels of peroxynitrite (1 µM) are required for a VEGF-mediated angiogenic response, yet the redox-regulated mechanisms that govern the VEGF signal remain unexplored. We assessed the impact of VEGF and peroxynitrite on modifying redox-state, the level of reduced-glutathione (GSH) and S-glutathionylation on regulation of the low molecular weight protein tyrosine phosphatase (LMW-PTP) and focal adhesion kinase (FAK), which are key mediators of VEGF-mediated cell migration.
View Article and Find Full Text PDFBackground And Purpose: Up-regulation of thioredoxin interacting protein (TXNIP), an endogenous inhibitor of thioredoxin (Trx), compromises cellular antioxidant and anti-apoptotic defences and stimulates pro-inflammatory cytokines expression, implying a role for TXNIP in apoptosis. Here we have examined the causal role of TXNIP expression in mediating retinal neurotoxicity and assessed the neuroprotective actions of verapamil, a calcium channel blocker and an inhibitor of TXNIP expression.
Experimental Approach: Retinal neurotoxicity was induced by intravitreal injection of NMDA in Sprague-Dawley rats, which received verapamil (10 mg·kg(-1), p.
We have previously shown a causal role of peroxynitrite in mediating retinal ganglion cell (RGC) death in diabetic and neurotoxicity models. In the present study, the role of peroxynitrite in altering the antioxidant and antiapoptotic thioredoxin (Trx) system will be investigated as well as the subsequent effects on glial activation and capillary degeneration. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-d-aspartate (NMDA) in rats, which also received the peroxynitrite decomposition catalyst FeTPPs.
View Article and Find Full Text PDFDiabetic retinopathy and retinopathy of prematurity are blinding disorders that follow a pathological pattern of ischemic retinopathy and affect premature infants and working-age adults. Yet, the treatment options are limited to laser photocoagulation. The goal of this study is to elucidate the molecular mechanism and examine the therapeutic effects of inhibiting tyrosine nitration on protecting early retinal vascular cell death and late neovascularization in the ischemic retinopathy model.
View Article and Find Full Text PDF