Publications by authors named "Mohammadreza Moghaddam-Manesh"

Rising to the challenge of formidable multi-step reaction needed for the synthesis of polycyclic compounds, an efficient one-pot two-step procedure for the synthesis of densely functionalized novel pyrazolo[5″,1'':2',3']pyrimido[4',5':5,6] [1,4]thiazino[2,3-b]quinoxalines from synthetically accessible starting materials 6-bromo-7-chloro-3-cyano-2-(ethylthio)-5-methylpyrazolo[1,5-a]pyrimidine, 3-aminoquinoxaline-2-thiol and some readily accessible alkyl halides was established. The domino reaction pathway involves cyclocondensation/N-alkylation sequence in KCO/N,N-dimethyl formamide under heating condition. DPPH free radical scavenging activity of all synthesized pyrazolo[5″,1'':2',3']pyrimido[4',5':5,6][1,4]thiazino[2,3-b]quinoxalines was evaluated to determine their antioxidant potentials.

View Article and Find Full Text PDF

For the first time, biocompatible and biodegradable Ta-metal organic framework (MOF)/polyether block amide (PEBA) fibrous polymeric nanostructures were synthesized by ultrasonic and electrospinning routes in this study. The XRD peaks of products were wider, which is due to the significant effect of the ultrasonic and electrospinning methods on the final product. The adsorption/desorption behavior of the nanostructures is similar to that of the third type of isotherm series, which showed mesoporous behavior for the products.

View Article and Find Full Text PDF

Metal organic frameworks (MOFs) are a promising choice for antibacterial and antifungal activity due to their composition, unique architecture, and larger surface area. Herein, the ultrasonic method was used to synthesize the Cu/Zn-MOF material as an effective hybrid nanostructure with ideal properties. SEM images were used to investigate the product's morphology and particle size distribution.

View Article and Find Full Text PDF

The ultrasonic assisted reverse micelle method (UARM) was used to synthesize Cu-MOF from Cu(NO)·3HO and 2,6-pyridine dicarboxylic acid in a 1:1 molar proportion. It has been characterized using FT-IR, XRD, nitrogen adsorption analysis, SEM and TEM-EDX. The morphology of Cu-MOFs was spherical, with an average particle size distribution of less than 100 nm.

View Article and Find Full Text PDF

l,3-Dithiin with two sulfurs in its structure is a six-membered, sulfur-containing heterocyclic compound. New derivatives of 6'-amino-2'-(arylidene)spiro[indeno[1,2-b]quinoxaline[1,3]dithiine]-5'-carbonitrile were prepared by the multi-component reaction of active methylene compounds, carbon disulfide, malononitrile and multi-ring compounds containing a carbonyl group in the presence of piperidine as a catalyst at room temperature with high efficiency. The antimicrobial effects including antibacterial and antifungal effects based on inhibition zone diameter (IZD), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) were studied.

View Article and Find Full Text PDF

New spiro[indoline-3,4'-[1,3]dithiine]@Cu(NO) supported on FeO@gly@CE magnetic nanoparticle were synthesized and used as efficient and recyclable catalyst in the synthesis of 2-oxospiro[indoline-3,4'-[1,3]dithiine]-5'-carbonitrile derivatives. The structure of magnetic nanoparticles were confirmed using energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), infrared spectroscopy (FT-IR) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Subsequently, antibacterial and antifungal activities in terms of inhibition zone diameter, minimum inhibitory concentration, minimum bactericidal concentration and antioxidant activity against the DPPH free radical of the derivatives were investigated.

View Article and Find Full Text PDF

Background: Design and synthesis of new inhibitor agents to deal with pathogenic microorganisms is expanding. In this project, an efficient, environmentally friendly, economical, rapid and mild procedure was developed for the synthesis of novel functionalized isoxazole derivatives as antimicrobial potentials.

Methods: Multicomponent reaction between malononitrile (1), hydroxylamine hydrochloride (2) and different aryl or heteroaryl aldehydes 3a-i afforded novel 5-amino-isoxazole-4-carbonitriles 4a-i in good product yields and short reaction times.

View Article and Find Full Text PDF

The biological properties of imidazolidine- and tetrahydropyrimidine-2-thione derivatives such as antiviral, antitumor, anti-inflammatory, and analgesic activities increase the demand for mild and efficient synthetic routes. In this regard, methods such as reaction of diaminoalkanes with carbon disulfide have been developed. However, this method usually suffers from relatively long reaction times, using excess reagents, vigorous reaction conditions, and emission of pernicious hydrogen sulfide gas.

View Article and Find Full Text PDF