Stress localization ahead of a slip band blocked by a grain boundary is measured for three different grain boundaries in unalloyed Mg using high-resolution electron backscatter diffraction (HR-EBSD). The results are compared with a theoretical dislocation pile-up model, from which slip system resistance and micro-Hall-Petch coefficients for different grain boundary types are deduced. The results indicate that grain boundary character plays a crucial role in determining micro-Hall-Petch coefficients, which can be used to strengthen classical crystal plasticity constitutive models to make predictions linked to the effect of grain boundary strengthening.
View Article and Find Full Text PDF