In this paper, we present how complementary characterization techniques, such as electrical measurements with a vector network analyzer (VNA), optical measurements with a laser Doppler vibrometer (LDV), and numerical simulations with the finite element method, coupled with spectral domain analysis (FEMSDA), allow us to independently access different properties of a SAW device and fully characterize its operation using the coupling-of-modes theory (COM). A set of chemical SAW sensors coated with parylene C layers of different thicknesses (1, 1.5, and 2 µm) and an uncoated sensor were used as test samples.
View Article and Find Full Text PDFSurface acoustic waves (SAWs) are sensitive to the presence of a layer on the surface of a material, even if this layer is extremely thin compared to their wavelengths. Given the very slow propagation velocities of SAWs compared to electromagnetic waves, their wavelengths are on the order of 40 μm for acoustic frequencies on the order of 100 MHz. However, it has been shown that these waves are dispersive for coatings whose thicknesses are more than 1000 times smaller than their wavelength.
View Article and Find Full Text PDFIn the ultrasonic non-destructive evaluation of thin films, it is essential to have ultrasonic transducers that are able to generate surface acoustic waves (SAW) of suitably high frequencies in a wide frequency range of between ten and several hundred megahertz. If the characterization is carried out with the transducer in contact with the sample, it is also necessary that the transducers provide a high level of mechanical displacement (>100 s pm). This level allows the wave to cross the transducer−sample interface and propagate over the distance of a few millimeters on the sample and be properly detected.
View Article and Find Full Text PDFNon-Destructive Testing of adhesion using Surface Acoustic Waves (SAW) is an important issue in industrial and academic domains. Indeed, these waves are sensitive to the quality of adhesion at the interface between the substrate and the layer with a thickness comparable to the acoustic wavelength. Furthermore, their propagation distance allows a large majority of the sample to be tested quickly.
View Article and Find Full Text PDFThis paper deals with non-destructive testing of thin layer structures using Rayleigh-type waves over a broad frequency range (25-125 MHz). The dispersion phenomenon was used to characterize a layer-on-substrate-type sample comprising a thin layer of platinum 100 nm thick on a silicon substrate. The originality of this paper lies in the investigation of different ways of generating surface acoustic waves (SAWs) with large bandwidth interdigital transducers (IDTs) as well as the development of a measuring device to accurately estimate the SAW phase velocity.
View Article and Find Full Text PDFSurface Acoustic Wave Interdigital Transducers (SAW-IDT) has a considerable application potential for characterization of properties of thin layers, coatings and functional surfaces. For optimization of these SAW-IDTs, it is necessary to study various SAW-IDT configurations by varying the number of electrodes, dimensions of the electrodes, their shapes and spacings. The finite element method (FEM) is generally used to model such transducers but results are obtained in several hours (or days).
View Article and Find Full Text PDFWideband surface acoustic wave (SAW) generation with a spatial chirp-based interdigital transducer was optimized for non-destructive characterization and testing of coatings and thin layers. The use of impulse temporal excitation (Dirac-type negative pulse) leads to a wide band emitter excitation but with significantly limited SAW output amplitudes due to the piezoelectric crystal breakdown voltage. This limitation can be circumvented by applying a temporal chirp excitation corresponding in terms of frequency band and duration to the spatial chirp transducer configuration.
View Article and Find Full Text PDFSurface acoustic waves (SAW) are particularly suited to effectively monitoring and characterizing structural surfaces (condition of the surface, coating, thin layer, micro-cracks…) as their energy is localized on the surface, within approximately one wavelength. Conventionally, in non-destructive testing, wedge sensors are used to the generation guided waves but they are especially suited to flat surfaces and sized for a given type material (angle of refraction). Additionally, these sensors are quite expensive so it is quite difficult to leave the sensors permanently on the structure for its health monitoring.
View Article and Find Full Text PDFControlling the thin film deposition and mechanical properties of materials is a major challenge in several fields of application. We are more particularly interested in the characterization of optical thin layers produced using sol-gel processes to reduce laser-induced damage. The mechanical properties of these coatings must be known to control and maintain optimal performance under various solicitations during their lifetime.
View Article and Find Full Text PDFControlling thin film deposition of materials and property gradients is a major challenge for the implementation of applications in microelectronics or glassmaking. It is essential to control the level of residual stress and thus important to have the right tools to characterize this stress in terms of scale and nature of the deposits. In this context, dispersion of ultrasound surface waves caused by the presence of a residual micrometric surface stress was studied in an amorphous medium for different superficial fields of residual stress.
View Article and Find Full Text PDFIn this paper, Rayleigh waves were generated and studied over a broad frequency range (5-50 MHz) and from the dispersion phenomenon, two substrate on layer type-samples with thin layer thicknesses of 1 μm and 500 nm, respectively, were characterized. The originality in this paper is the use of surface acoustic wave interdigital transducers (IDT) to generate surface waves as well as the development of a measuring device enabling an accurate estimation of the phase velocity to be obtained, which is essential in order to characterize such thin layers. Considering the excitation frequencies (5-50 MHz) and therefore the widths necessary on the electrodes for these types of IDT sensors (20-200 μm), a lift-off procedure was chosen to deposit the electrodes on the lithium niobate (LiNbO(3)) piezoelectric substrates.
View Article and Find Full Text PDFA coupled analysis of high and low frequency resonant ultrasound spectroscopy of spheroidal modes is presented in this paper. Experimentally, by using an ultrasonic probe for the excitation (piezoelectric transducer) and a heterodyne optic probe for the receiver (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range of 100 kHz-45 MHz in a continuous regime. This wide analysis range enabled variations in velocity due to the presence of defects to be differentiated from the inherent characteristics of the balls and consequently, it offers the possibility of detecting cracks independently of production variations.
View Article and Find Full Text PDFAn original inversion method specifically adapted to the estimation of Poisson coefficient of balls by using their resonance spectra is described. From the study of their elastic vibrations, it is possible to accurately characterize the balls. The proposed methodology can create both spheroidal modes in the balls and detect such vibrations over a large frequency range.
View Article and Find Full Text PDFThe characterization of stress states in materials is often necessary in some industrial application. The ultrasonic methods can be potentially convenient since stress states inside materials can be obtained even if materials are opaque. Nevertheless, the knowledge of acousto-elastic coefficients is generally necessary to estimate residual stresses by ultrasonic methods, but the experimental determination of these acousto-elastic coefficients can be difficult in some cases.
View Article and Find Full Text PDF