Insect-derived antifungal peptides have a significant economic potential, particularly for the engineering of pathogen-resistant crops. However, the nonspecific antifungal activity of such peptides could result in detrimental effects against beneficial fungi, whose interactions with plants promote growth or increase resistance against biotic and abiotic stress. The antifungal peptide metchnikowin (Mtk) from Drosophila melanogaster acts selectively against pathogenic Ascomycota, including Fusarium graminearum, without affecting Basidiomycota such as the beneficial symbiont Piriformospora indica.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are essential components of the insect innate immune system. Their diversity provides protection against a broad spectrum of microbes and they have several distinct modes of action. Insect-derived AMPs are currently being developed for both medical and agricultural applications, and their expression in transgenic crops confers resistance against numerous plant pathogens.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are ubiquitous components of the insect innate immune system. The model insect Galleria mellonella has at least 18 AMPs, some of which are still uncharacterized in terms of antimicrobial activity. To determine why G.
View Article and Find Full Text PDFPlants express a diverse repertoire of functionally and structurally distinct antimicrobial peptides (AMPs) which provide innate immunity by acting directly against a wide range of pathogens. AMPs are expressed in nearly all plant organs, either constitutively or in response to microbial infections. In addition to their direct activity, they also contribute to plant immunity by modulating defence responses resulting from pathogen-associated molecular pattern/effector-triggered immunity, and also interact with other AMPs and pathways involving mitogen-activated protein kinases, reactive oxygen species, hormonal cross-talk and sugar signalling.
View Article and Find Full Text PDFAll organisms have an internal timing mechanism, termed the circadian clock, to anticipate the light/dark cycle. The clock, with an oscillating rhythm that approximates 24h, is a rather robust system persisting to a great extent in continuous light and dark. It is widely accepted that plant growth and development are regulated by the clock, hormones, and sugar signals.
View Article and Find Full Text PDFSugars are involved in many metabolic and signalling pathways in plants. Sugar signals may also contribute to immune responses against pathogens and probably function as priming molecules leading to pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity in plants. These putative roles also depend greatly on coordinated relationships with hormones and the light status in an intricate network.
View Article and Find Full Text PDFOver the past decades, considerable advances have been made in understanding the crucial role and the regulation of sucrose metabolism in plants. Among the various sucrose-catabolizing enzymes, alkaline/neutral invertases (A/N-Invs) have long remained poorly studied. However, recent findings have demonstrated the presence of A/N-Invs in various organelles in addition to the cytosol, and their importance for plant development and stress tolerance.
View Article and Find Full Text PDFSugars play important roles as both nutrients and regulatory molecules throughout plant life. Sugar metabolism and signalling function in an intricate network with numerous hormones and reactive oxygen species (ROS) production, signalling and scavenging systems. Although hexokinase is well known to fulfil a crucial role in glucose sensing processes, a scenario is emerging in which the catalytic activity of mitochondria-associated hexokinase regulates glucose-6-phosphate and ROS levels, stimulating antioxidant defence mechanisms and the synthesis of phenolic compounds.
View Article and Find Full Text PDF