In this study, magnetic core/chitosan shell Nanoparticles (NPs) containing cisplatin were synthesized via cisplatin complexation with tripolyphosphate as the chitosan crosslinker using two different procedures: a conventional batch flow method and a microfluidic approach. An integrated microfluidic device composed of three stages was developed to provide precise and highly controllable mixing. The comparison of the results revealed that NPs synthesized in microchannels were monodisperse 104 ± 14.
View Article and Find Full Text PDFThe present study examines chemotherapy by incorporating multi-scale mathematical modeling to predict drug delivery and its effects. This approach leads to a more-realistic physiological tumor model than is possible with previous approaches, as it obtains the capillary network geometry from an image, and also considers the tumor's necrotic core, drug binding, and cellular uptake. Modeling of the fluid flow and drug transport is then performed in the extracellular matrix.
View Article and Find Full Text PDFThe solute transport distribution in a tumor is an important criterion in the evaluation of the cancer treatment efficacy. The fraction of killed cells after each treatment can quantify the therapeutic effect and plays as a helpful tool to evaluate the chemotherapy treatment schedules. In the present study, an image-based spatio-temporal computational model of a solid tumor is provided for calculation of interstitial fluid flow and solute transport.
View Article and Find Full Text PDF