Publications by authors named "Mohammad Zhian Asadzadeh"

Physics-Informed neural networks (PINNs) have demonstrated remarkable performance in solving partial differential equations (PDEs) by incorporating the governing PDEs into the network's loss function during optimization. PINNs have been successfully applied to diverse inverse and forward problems. This study investigates the feasibility of using PINNs for material data identification in an induction hardening test rig.

View Article and Find Full Text PDF

In the automotive industry, corrosion protected galvanized advanced high strength steels with high ductility (AHSS-HD) gain importance due to their good formability and their lightweight potential. Unfortunately, under specific thermomechanical loading conditions such as during resistance spot welding galvanized, AHSS-HD sheets tend to show liquid metal embrittlement (LME). LME is an intergranular decohesion phenomenon leading to a drastic loss of ductility of up to 95%.

View Article and Find Full Text PDF

In this work, we present and test an approach based on an inverse model applicable to the control of induction heat treatments. The inverse model is comprised of a simplified analytical forward model trained with experiments to predict and control the temperature of a location in a cylindrical sample starting from any initial temperature. We solve the coupled nonlinear electromagnetic-thermal problem, which contains a temperature dependent parameter α to correct the electromagnetic field on the surface of a cylinder, and as a result effectively the modeled temperature elsewhere in the sample.

View Article and Find Full Text PDF