Publications by authors named "Mohammad Zargartalebi"

Hypothesis: Phase change slurries (PCS) have emerged as a promising class of oil-in-water emulsions for energy applications, but stability remains an issue. Pickering phase change slurries (PPCS) stabilized solely by nanoparticles could offer enhanced stability. We hypothesize that stability in PPCS can be achieved by tuning environmental variables of salinity and temperature.

View Article and Find Full Text PDF

Phase change materials that leverage the latent heat of solid-liquid transition have many applications in thermal energy transport and storage. When employed as particles within a carrier fluid, the resulting phase change slurries (PCSs) could outperform present-day single-phase working fluids─provided that viscous losses can be minimized. This work investigates the rheological behavior of encapsulated and nonencapsulated phase change slurries (PCSs) for applicability in flowing thermal energy systems.

View Article and Find Full Text PDF

We now know that nanoplastics can harm aquatic organisms, but understanding ecological risk starts with understanding fate. We coupled population balance and fugacity models to predict the conditions under which nanoplastics remain as single particles, aggregate, or sediment and to predict their capacity to concentrate organic pollutants. We carried out simulations across a broad range of nanoplastic concentrations, particle sizes, and particle-particle interactions under a range of salinity and organic matter conditions.

View Article and Find Full Text PDF

Electrophoresis (EP) of droplets is an intriguing phenomenon that has applications in biological systems, separation strategies, and reactor engineering. Droplet EP is significantly different from the classic particle EP because of droplet characteristics such as a mobile surface charge and the nonrigidity of the interface. Also, the liquid-liquid system, where there is an interplay between the hydrodynamic and electrokinetic forces in both phases, adds to the complexity of electrophoretic motion.

View Article and Find Full Text PDF