Microplastics (MPs) are prevalent in rivers worldwide and can adversely impact riverine ecosystems. To sample for MPs in streambeds, a variety of different sampling techniques is applied, including (i) scooping, (ii) coring, (iii) freeze coring, (iv) resuspension method, and (v) piezometer sampling. These common sampling techniques capture different parts of the streambed and different sampling volumes.
View Article and Find Full Text PDFRecent studies on the distribution of microplastics in aquatic sediments have deployed different methods and devices for density separation of microplastics from sediments. However, instrument specific limitations have been noted, including their high cost, difficulty in handling, or/and the potential for elevated contamination risk due to their plastic composition. This study improves existing sediment microplastic separation techniques by modifying the commonly used conical shape glass separating funnels.
View Article and Find Full Text PDFWhile microplastic transport, fate, and effects have been a focus of studies globally, the consequences of their presence on ecosystem functioning have not received the same attention. With increasing evidence of the accumulation of microplastics at sediment-water interfaces there is a need to assess their impacts on ecosystem engineers, also known as bioturbators, which have direct and indirect effects on ecosystem health. This study investigated the impact of microplastics on the bioturbator alongside any effects on the biogeochemical processes at the sediment-water interface.
View Article and Find Full Text PDFUnderstanding microplastic particles (MPs) accumulation and transport along rivers represents a major task due to the complexity and heterogeneity of rivers, and their interactions with their wider corridor. The identification of MPs hotspots and their potential sources is especially challenging in coarse-bed rivers transporting a wide range of particle sizes with a high degree of variability in time and space. This research focuses on the gravel-bed Ain River (Rhône River tributary, France) which is managed by means of various dams and also hosts one of the major plastic production centres in Europe (Oyonnax and Bienne Plastic Valleys).
View Article and Find Full Text PDFDespite the increasing attention given to the impacts of nanoplastics in terrestrial environments, there is limited data about the effects on plants, and the quantitative information on uptake. In the present study, wheat plants grown in hydroponics were exposed to Pd-doped nanoplastics. This allowed us to quantify nanoplastics uptake and translocation to the shoots.
View Article and Find Full Text PDF