Publications by authors named "Mohammad Tofael Kabir Sharkar"

Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes-Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)-together with three reprogramming-helper genes-dominant-negative (DN)-TGFβ, DN-Wnt8a, and acid ceramidase (AC)-to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro.

View Article and Find Full Text PDF

Heart failure (HF) remains a major cause of morbidity and mortality worldwide. One of the risk factors for HF is cardiac hypertrophy (CH), which is frequently accompanied by cardiac fibrosis (CF). CH and CF are controlled by master regulators mTORC1 and TGF-, respectively.

View Article and Find Full Text PDF

Modified mRNA (modRNA) is a promising new gene therapy approach that has safely and effectively delivered genes into different tissues, including the heart. Current efforts to use DNA-based or viral gene therapy to induce cardiac regeneration postmyocardial infarction (MI) or in heart failure (HF) have encountered key challenges, e.g.

View Article and Find Full Text PDF

Myocardial infarction (MI) is a leading cause of morbidity and mortality in the Western world. In the past decade, gene therapy has become a promising treatment option for heart disease, owing to its efficiency and exceptional therapeutic effects. In an effort to repair the damaged tissue post-MI, various studies have employed DNA-based or viral gene therapy but have faced considerable hurdles due to the poor and uncontrolled expression of the delivered genes, edema, arrhythmia, and cardiac hypertrophy.

View Article and Find Full Text PDF

Modified mRNA (modRNA) is a gene-delivery platform for transiently introducing a single gene or several genes of interest to different cell types and tissues. modRNA is considered to be a safe vector for gene transfer, as it negligibly activates the innate immune system and does not compromise the genome integrity. The use of modRNA in basic and translational science is rising, due to the clinical potential of modRNA.

View Article and Find Full Text PDF

Background: The adult mammalian heart has limited regenerative capacity, mostly attributable to postnatal cardiomyocyte cell cycle arrest. In the last 2 decades, numerous studies have explored cardiomyocyte cell cycle regulatory mechanisms to enhance myocardial regeneration after myocardial infarction. Pkm2 (Pyruvate kinase muscle isoenzyme 2) is an isoenzyme of the glycolytic enzyme pyruvate kinase.

View Article and Find Full Text PDF

Background: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate.

View Article and Find Full Text PDF

Synthetic modified RNA (modRNA) is a novel vector for gene transfer to the heart and other organs. modRNA can mediate strong, transient protein expression with minimal induction of the innate immune response and risk for genome integration. modRNA is already being used in several human clinical trials, and its use in basic and translational science is growing.

View Article and Find Full Text PDF

Adult mammalian hearts have a very limited regeneration capacity, due largely to a lack of cardiomyocyte (CM) proliferation. It was recently reported that epicardial, but not myocardial, follistatin-like 1 (Fstl1) activates CM proliferation and cardiac regeneration after myocardial infarction (MI). Furthermore, bacterially synthesized human FSTL 1 (hFSTL1) was found to induce CM proliferation, whereas hFSTL1 synthesized in mammals did not, suggesting that post-translational modifications (e.

View Article and Find Full Text PDF

Thymus development is a complicated process that includes highly dynamic morphological changes and reciprocal tissue interactions between endoderm-derived epithelial cells of the anterior foregut and neural crest-derived mesenchymal cells. We generated and characterized a Tbx1-AmCyan1 reporter transgenic mouse to visualize thymus precursor cells during early embryonic development. In transgenic embryos, AmCyan1 fluorescence was specifically detected in the endoderm of the developing 3rd and 4th pharyngeal pouches and later in thymus epithelium until E14.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created transgenic mice with a mutation in the Rb protein that makes it resistant to phosphorylation, leading to liver tumors (adenomas) appearing in about half the mice by 15 months of age.
  • * In these mutant mice, the gene c-Myc was consistently overexpressed, along with several of its target genes, which suggests that continuous activation of these genes contributes to liver tumor development over time.
View Article and Find Full Text PDF