IEEE Trans Pattern Anal Mach Intell
August 2020
It is of fundamental importance to find algorithms obtaining optimal performance for learning of statistical models in distributed and communication limited systems. Aiming at characterizing the optimal strategies, we consider learning of Gaussian Processes (GP) in distributed systems as a pivotal example. We first address a very basic problem: how many bits are required to estimate the inner-products of some Gaussian vectors across distributed machines? Using information theoretic bounds, we obtain an optimal solution for the problem which is based on vector quantization.
View Article and Find Full Text PDF