Nutrition is an important determinant of bone health and attainment of peak bone mass. Diets containing dried plum (DP) have been shown to increase bone volume and strength. These effects may be linked to the immune system and DP-specific polyphenols.
View Article and Find Full Text PDFTher Adv Musculoskelet Dis
February 2016
The lifespan of men is increasing and this is associated with an increased prevalence of osteoporosis in men. Osteoporosis increases the risk of bone fracture. Fractures are associated with increased disability and mortality, and public health problems.
View Article and Find Full Text PDFExposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically active, cancellous bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16 week), male C57BL/6J mice were exposed to either 2 Gy gamma rays ((137)Cs, 0.
View Article and Find Full Text PDFSevere soft tissue trauma is associated with heterotopic ossification (HO), the abnormal deposition of bone at extra-skeletal sites. The pathophysiology of the development of trauma-induced HO remains largely unknown due in part to the lack of appropriate animal models. In this study, we sought to develop a new trauma-induced HO mouse model using muscle impact injury combined with low dose BMP-2.
View Article and Find Full Text PDFDiet plays a critical role in the pathogenesis of major chronic diseases common in populations of US veterans. The role of nutrition-focused wellness coaching in improving dietary behavior and/or reducing weight in overweight and obese US veterans is not known. At the San Francisco Veterans Affairs Medical Center, US veterans aged 25 to 80 years were randomized to receive nutrition coaching on eating behaviors at baseline only (control group, n=22) or an additional eight times over the course of 6 months (intervention group, n=28) in 2010-2011.
View Article and Find Full Text PDFThe chemokine CXCL12 and its receptor CXCR4 play a key role in regulation of hematopoietic stem cells and cell migratory function during morphogenesis. Osteoblasts express both the ligand and the receptor, but little is known about the role of CXCL12-CXCR4 signaling in maintaining skeletal homeostasis. Using Cre-Lox technology to delete CXCR4 in mature osteoblasts in mice, we show here a significant decrease in bone mass and alterations in cancellous bone structure.
View Article and Find Full Text PDFIntroduction: While the anti-resorptive effects of the bisphosphonates (BPs) are well documented, many questions remain about their mechanisms of action, particularly following long-term use. This study evaluated the effects of alendronate (Ale) treatment on TGF-β1 signaling in mesenchymal stem cells (MSCs) and osteocytes, and the relationship between prolonged alendronate treatment on systemic TGF-β1 levels and bone strength.
Methods: TGF-β1 expression and signaling were evaluated in MSCs and osteocytic MLO-Y4 cells following Ale treatment.
Loss of skeletal weight bearing or skeletal unloading as occurs during spaceflight inhibits bone formation and stimulates bone resorption. These are associated with a decline in the osteoblast (Ob.S/BS) and an increase in the osteoclast (Oc.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2012
The Wnt antagonist Sost has emerged as a key regulator of bone homeostasis through the modulation of Lrp4/5/6 Wnt coreceptors. In humans, lack of Sclerostin causes sclerosteosis and van Buchem (VB) disease, two generalized skeletal hyperostosis disorders that result from hyperactive Wnt signaling. Unlike sclerosteosis, VB patients lack SOST coding mutations but carry a homozygous 52 kb noncoding deletion that is essential for the transcriptional activation of SOST in bone.
View Article and Find Full Text PDFSclerostin functions as an antagonist to Wnt signaling and inhibits bone-forming activity. We studied the effects of skeletal unloading and treatment with sclerostin antibody (Scl-Ab) on mesenchymal stem cell, osteoprogenitor and osteoclast precursor pools, and their relationship to bone formation and resorption. Male C57BL/6 mice (5-months-old) were hind limb unloaded for 1 week or allowed normal ambulation and treated with Scl-Ab (25 mg/kg, s.
View Article and Find Full Text PDFAging reduces the number of mesenchymal stem cells (MSCs) that can differentiate into osteoblasts in the bone marrow, which leads to impairment of osteogenesis. However, if MSCs could be directed toward osteogenic differentiation, they could be a viable therapeutic option for bone regeneration. We have developed a method to direct MSCs to the bone surface by attaching a synthetic high-affinity and specific peptidomimetic ligand (LLP2A) against integrin α4β1 on the MSC surface to a bisphosphonate (alendronate, Ale) that has a high affinity for bone.
View Article and Find Full Text PDFWe examined age-related changes in biochemical markers and regulators of osteoblast and osteoclast activity in C57BL/6 mice to assess their utility in explaining age-related changes in bone. Several recently discovered regulators of osteoclasts and osteoblasts were also measured to assess concordance between their systemic levels versus their levels in marrow plasma, to which bone cells are directly exposed. MicroCT of 6-, 12-, and 24-month-old mice indicated an early age-related loss of trabecular bone volume and surface, followed by endocortical bone loss and periosteal expansion.
View Article and Find Full Text PDFIn response to cellular insult, several pathways can be activated, including necrosis, apoptosis, and autophagy. Because glucocorticoids (GCs) have been shown to induce both osteocyte apoptosis and autophagy, we sought to determine whether osteocyte cell fate in the presence of GCs was dose dependent by performing in vivo and in vitro studies. Male Swiss-Webster mice were treated with slow-release prednisolone pellets at 1.
View Article and Find Full Text PDFOsteoporotic patients treated with antiresorptive or anabolic agents experience an increase in bone mass and a reduction in incident fractures. However, the effects of these medications on bone quality and strength after a prolonged discontinuation of treatment are not known. We evaluated these effects in an osteoporotic rat model.
View Article and Find Full Text PDFAugmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased bone formation.
View Article and Find Full Text PDFCalcimimetics activate the calcium-sensing receptor (CaR) and reduce parathyroid hormone (PTH) by increasing the sensitivity of the parathyroid CaR to ambient calcium. The calcimimetic, cinacalcet, is effective in treating secondary hyperparathyroidism in dialysis patients [chronic kidney disease (CKD 5)], but little is known about its effects on stage 3-4 CKD patients. We compared cinacalcet and paricalcitol in uremic rats with creatinine clearances "equivalent" to patients with CKD 3-4.
View Article and Find Full Text PDFTechniques for assessing bone dynamic are in high demand. Calcium (Ca) kinetic studies are currently being used in our clinical studies of bone turnover in adolescents and elderly. The technique has rarely been compared to the standard method of bone dynamic histomorphometry.
View Article and Find Full Text PDFWe report the results of a series of experiments designed to determine the effects of ibandronate (Ibn) and risedronate (Ris) on a number of bone quality parameters in aged osteopenic rats to explain how bone material and bone mass may be affected by the dose of bisphosphonates (BP) and contribute to their anti-fracture efficacy. Eighteen-month old female rats underwent either ovariectomy or sham surgery. The ovariectomized (OVX) groups were left untreated for 2 months to develop osteopenia.
View Article and Find Full Text PDFSoy isoflavones and their metabolites, with estrogenic activity, have been considered candidates for reducing postmenopausal bone loss. In this study, we examined the effect of dietary equol, a bioactive metabolite of the soy isoflavone daidzein, on equol tissue distribution, bone parameters, and reproductive tissue activity using an adult ovariectomized (OVX) rat model. An 8-wk feeding study was conducted to compare 4 dietary treatments of equol (0, 50, 100, 200 mg/kg diet) in 6-mo-old OVX female Sprague-Dawley rats.
View Article and Find Full Text PDFSecreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)expression. Bone mass and microarchitecture were measured by micro-computed tomography (microCT).
View Article and Find Full Text PDFCalcium (Ca) supplements, especially Ca carbonate (CaCO3), are the main alternative sources of dietary Ca and an important part of a treatment regimen for osteoporosis, the most common metabolic bone disorder of aging and menopause. In a female ovariectomized (OVX) rat model for studying postmenopausal osteoporosis, we tested the hypothesis that a small compared with a large particle size of CaCO3 (13.0- vs.
View Article and Find Full Text PDFRecent discoveries in humans and mice have revealed that the Wnt (Wingless and Int-1) signaling pathway is responsible for a complex array of functions in maintaining bone homeostasis. The Wnt proteins are key modulators of mesenchymal lineage specification and regulate most aspects of osteoblast physiology and postnatal bone acquisition by controlling the differentiation and activity of osteoblasts and osteoclasts. Initial reports have indicated that activators of Wnt signaling are potent promoters of osteogenesis; however, systemic hyperactivation of the canonical Wnt pathway could potentially accelerate neoplastic transformation and subsequent tumor growth.
View Article and Find Full Text PDF