Catalytic pathways to produce high carbon number compounds from benzyl phenyl ether require multiple steps to break the aryl etheric carbon-oxygen bonds; these steps are followed by energy-intensive processes to remove oxygen atoms and/or carbon-carbon coupling. Here, we show an upgrading strategy to transform benzyl phenyl ether into large phenolic (C-C) compounds by a one-step C-O breaking and C-C coupling catalyzed by metal triflates under a mild condition (100 °C and 1 bar). Hafnium triflate was the most selective for the desired products.
View Article and Find Full Text PDFColloidal crystallization using DNA provides a robust method for fabricating highly programmable nanoparticle superstructures with collective plasmonic properties. Here, we report on the DNA-guided fabrication of 3D plasmonic aggregates from polydisperse gold nanoprisms. We first construct 1D crystals DNA-induced and shape-directed face-to-face assembly of anisotropic gold nanoprisms.
View Article and Find Full Text PDFThe utilization of nanoparticle-polymer bead hybrid nanostructures as a SERS substrate depends on the control of the deposition, density, and distribution of nanoparticles on the bead surface. Here we demonstrate the fabrication of a large area SERS substate via a two- step DNA mediated assembly of gold nanoprisms and polystyrene (PS) beads into a large ensemble of beads that are densely coated with nanoprisms. First, nanoprisms are loaded on PS beads through DNA hybridization.
View Article and Find Full Text PDF