Plants are continuously attacked by several biotic and abiotic factors. Among abiotic factors, heat, cold, drought, and salinity are common stresses. Plants produce several hormones as their main weapon in fightback against these stresses.
View Article and Find Full Text PDFCalcium (Ca) is one of the essential mineral nutrients for plant growth and development. However, the effects of long-term Ca deficiency in orphan crops such as Tef [(Eragrostis tef) (Zucc.) Trotter], which accumulate high levels of Ca in the grains, remained unknown.
View Article and Find Full Text PDFCRISPR effector Cas13 recognizes and degrades RNA molecules that are complementary to its guide RNA (gRNA) and possesses potential as an antiviral biotechnology because it can degrade viral mRNA and RNA genomes. Because multiplexed targeting is a critical strategy to improve viral suppression, we developed a strategy to design of gRNAs where individual gRNAs have maximized activity at multiple viral targets, simultaneously, by exploiting the molecular biophysics of promiscuous target recognition by Cas13. These "polyvalent" gRNA sequences ("pgRNAs") provide superior antiviral elimination across tissue/organ scales in a higher organism () compared to conventionally-designed gRNAs-reducing detectable viral RNA by >30-fold, despite lacking perfect complementarity with either of their targets and, when multiplexed, reducing viral RNA by >99.
View Article and Find Full Text PDFTef ( (Zucc.) Trotter) is a staple food crop for 70% of the Ethiopian population and is currently cultivated in several countries for grain and forage production. It is one of the most nutritious grains, and is also more resilient to marginal soil and climate conditions than major cereals such as maize, wheat and rice.
View Article and Find Full Text PDFA detailed understanding of abiotic stress tolerance in plants is essential to provide food security in the face of increasingly harsh climatic conditions. Glucosinolates (GLSs) are secondary metabolites found in the Brassicaceae that protect plants from herbivory and pathogen attack. Here we report that in Arabidopsis, aliphatic GLS levels are regulated by the auxin-sensitive Aux/IAA repressors IAA5, IAA6, and IAA19.
View Article and Find Full Text PDFThe cullin-RING E3 ligases (CRLs) regulate diverse cellular processes in all eukaryotes. CRL activity is controlled by several proteins or protein complexes, including NEDD8, CAND1, and the CSN Recently, a mammalian protein called Glomulin (GLMN) was shown to inhibit CRLs by binding to the RING BOX (RBX1) subunit and preventing binding to the ubiquitin-conjugating enzyme. Here, we show that ABERRANT LATERAL ROOT FORMATION4 (ALF4) is an ortholog of GLMN The mutant exhibits a phenotype that suggests defects in plant hormone response.
View Article and Find Full Text PDFEthylene regulates many aspects of plant growth and development. In the presence of ethylene, the C terminus of EIN2 (EIN2C) translocates into the nucleus and activates transcription. Li et al.
View Article and Find Full Text PDFAuxin regulates a vast array of growth and developmental processes throughout the life cycle of plants. Auxin responses are highly context dependent and can involve changes in cell division, cell expansion, and cell fate. The complexity of the auxin response is illustrated by the recent finding that the auxin-responsive gene set differs significantly between different cell types in the root.
View Article and Find Full Text PDFMedicago truncatula NIP/LATD gene, required for symbiotic nitrogen fixing nodule and root architecture development, encodes a member of the NRT1(PTR) family that demonstrates high-affinity nitrate transport in Xenopus laevis oocytes. Of three Mtnip/latd mutant proteins, one retains high-affinity nitrate transport in oocytes, while the other two are nitrate-transport defective. To further examine the mutant proteins' transport properties, the missense Mtnip/latd alleles were expressed in Arabidopsis thaliana chl1-5, resistant to the herbicide chlorate because of a deletion spanning the nitrate transporter AtNRT1.
View Article and Find Full Text PDFThe Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M.
View Article and Find Full Text PDFLegume root architecture involves not only elaboration of the root system by the formation of lateral roots but also the formation of symbiotic root nodules in association with nitrogen-fixing soil rhizobia. The Medicago truncatula LATD/NIP gene plays an essential role in the development of both primary and lateral roots as well as nodule development. We have cloned the LATD/NIP gene and show that it encodes a member of the NRT1(PTR) transporter family.
View Article and Find Full Text PDF