In this study, surficial interactions of glutaraldehyde (GA) as an important crosslinker agent with the β-glucosidase (BGL) enzyme surface were investigated by theoretical methods. Since the inherent constraints of experimental methods limit their application to find the molecular perspective of these significant interactions in enzyme immobilization, theoretical methods were used as a complementary tool to understand this concept. The Minnesota density functional calculations showed that the chair conformations of the oxane-2,6-diol form of the GA were more stable than its free aldehyde form.
View Article and Find Full Text PDFDrug fluorination has the potential to reproduce useful drugs with decreasing the side effect of them. Identifying the effect of this improvement on the chemical properties and biological interactions of drug symbolizes a meaningful progress in drug design. Here the fluorination of Donepezil as an anti-Alzheimer drug, including 7 fluorinated derivatives of it, was investigated computationally.
View Article and Find Full Text PDFDespite extensive studies of the amino-functionalized silica surfaces, a comprehensive investigation of the effects of configuration and hydrolysis of 3-aminopropyltriethoxysilan (APTES) molecules attached on silica has not been studied yet. Therefore, the methods of quantum mechanics were used for the study of configuration and hydrolysis forms of APTES molecules attached on the surface. For this purpose, five different categories based on the number of hydrolyzed ethoxy groups including 16 configurations were designed and analyzed by the density functional theory (DFT) method.
View Article and Find Full Text PDFThe deacylation step of acylated Candida Antarctica lipase B, which was acylated with methylcaprylate (MEC) and acetylcholine (ACh), has been studied by using density functional theory method. Free energies of the entire reaction were calculated for enzyme deacylation by water and hydrogen peroxide that represented hydrolysis and perhydrolysis reactions, respectively. The calculations displayed that a stepwise mechanism there was with the enzyme-product complex being a deep minimum on the free energy surfaces of both of two reactions.
View Article and Find Full Text PDFCandida Antarctica lipase B (CALB), a specific enzyme to catalyze the hydrolysis of esters, can be a good candidate for acetylcholine (ACh) hydrolysis instead of acetylcholinesterase. The catalytic mechanism of the CALB acylation, as the first stage in the hydrolysis reaction, with ACh and methylcaprylate (MEC) has been examined by using density functional theory technique. The significant emphasis of this article is on the free energy barriers for the acylation step of hydrolysis reactions.
View Article and Find Full Text PDF