Publications by authors named "Mohammad S Safari"

More than 70% of hospital-acquired urinary tract infections are related to urinary catheters, which are commonly used for the treatment of about 20% of hospitalized patients. Urinary catheters are used to drain the bladder if there is an obstruction in the tube that carries urine out of the bladder (urethra). During catheter-associated urinary tract infections, microorganisms rise up in the urinary tract and reach the bladder, and cause infections.

View Article and Find Full Text PDF

Despite the widespread use of gold nanoparticles (GNPs), there is no consensus on their distribution to different tissues and organs. The present systematic review and meta-analysis addresses the accumulation of GNPs in brain tissue. Extensive searches were conducted in electronic databases, Medline, Web of Science, EMBASE, and Scopus.

View Article and Find Full Text PDF

Amyloid fibrillization is an exceedingly complex process in which incoming peptide chains bind to the fibril while concertedly folding. The coupling between folding and binding is not fully understood. We explore the molecular pathways of association of Aβ40 monomers to fibril tips by combining time-resolved in situ scanning probe microscopy with molecular modeling.

View Article and Find Full Text PDF

The microtubule-based mitotic spindle is responsible for equally partitioning the genome during each cell division, and its assembly is executed via several microtubule nucleation pathways. Targeting Protein for XKlp2 (TPX2) stimulates the branching microtubule nucleation pathway, where new microtubules are nucleated from preexisting ones within mitotic or meiotic spindles. TPX2, like other spindle assembly factors, is sequestered by binding to nuclear importins-α/β until the onset of mitosis, yet the molecular nature of this regulation remains unclear.

View Article and Find Full Text PDF

Background: Epilepsy is a neurological disorder characterized by seizures and recurrent attacks. Self-management leads to seizure control and maximizes the quality of life in epileptic patients. The purpose of this study was to evaluate the quality of applications available in the epileptic google play store based on the rating features of MARS (Mobile Applications Rating Scale).

View Article and Find Full Text PDF

The protein p53 is a crucial tumor suppressor, often called "the guardian of the genome"; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular.

View Article and Find Full Text PDF

Although there are many health advantages assigned to different live bacteria such as probiotics, some health threatening effects have also been reported. For example, live bacteria can transfer antibiotic resistance genes to other commensal and opportunistic bacteria of gastrointestinal tract. Recently, it was shown that using killed bacteria have some advantages over live ones.

View Article and Find Full Text PDF

Oligomers and fibrils of the amyloid-β (Aβ) peptide are implicated in the pathology of Alzheimer's disease. Here, we monitor the growth of individual Aβ40 fibrils by time-resolved in situ atomic force microscopy and thereby directly measure fibril growth rates. The measured growth rates in a population of fibrils that includes both single protofilaments and bundles of filaments are independent of the fibril thickness, indicating that cooperation between adjacent protofilaments does not affect incorporation of monomers.

View Article and Find Full Text PDF

About half of human cancers are associated with mutations of the tumor suppressor p53. Gained oncogenic functions of the mutants have been related to aggregation behaviors of wild-type and mutant p53. The thermodynamic and kinetic mechanisms of p53 aggregation are poorly understood.

View Article and Find Full Text PDF

Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins.

View Article and Find Full Text PDF

According to recently proposed two-step nucleation mechanisms, crystal nuclei form within preexisting dense liquid clusters. Clusters with radii about 100 nm, which capture from 10(-7) to 10(-3) of the total protein, have been observed with numerous proteins and shown to host crystal nucleation. Theories aiming to understand the mesoscopic size and small protein fraction held in the clusters have proposed that in solutions of single-chain proteins, the clusters consist of partially misfolded protein molecules.

View Article and Find Full Text PDF

Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles.

View Article and Find Full Text PDF