Molecular p-dopants designed to undergo electron transfer with organic semiconductors are typically planar molecules with high electron affinity. However, their planarity can promote the formation of ground-state charge transfer complexes with the semiconductor host and results in fractional instead of integer charge transfer, which is highly detrimental to doping efficiency. Here, we show this process can be readily overcome by targeted dopant design exploiting steric hindrance.
View Article and Find Full Text PDFPrimary hydroxylamines, RNHOH, decompose readily in the presence of transition metal ions. We show that this reactivity can be arrested by ligand design an intramolecular hydrogen bond. Six metal complexes with an intact NHOH group were synthesized and crystallographically characterized.
View Article and Find Full Text PDFA series of copper/nitrosoarene complexes was created that mimics several steps in biomimetic O activation by copper(I). The reaction of the copper(I) complex of ,,','-tetramethypropylenediamine with a series of para-substituted nitrosobenzene derivatives leads to adducts in which the nitrosoarene (ArNO) is reduced by zero, one, or two electrons, akin to the isovalent species dioxygen, superoxide, and peroxide, respectively. The geometric and electronic structures of these adducts were characterized by means of X-ray diffraction, vibrational analysis, ultraviolet-visible spectroscopy, NMR, electrochemistry, and density functional theory (DFT) calculations.
View Article and Find Full Text PDFEnviron Monit Assess
February 2020
The aim of this study was to quantify heavy metal pollution for environmental assessment of soil quality using a flexible approach based on multivariate analysis. The study was conducted using 241 soil samples collected from agricultural, urban and rangeland areas in northwestern Iran. The heavy metals causing soil pollution (SP) in the study area were determined.
View Article and Find Full Text PDFThe double crossover junction (DX) is a fundamental building block for generating complex and varied structures from DNA. However, its implementation in functional devices is limited to the inherent properties of DNA itself. Here, we developed design strategies to generate the first metal-DX DNA tiles (DX ) by site-specifically functionalizing the tile crossovers with tetrahedral binding pockets that coordinate Cu .
View Article and Find Full Text PDFBismuth metallic nanoparticles have evoked considerable interest in catalysis owing to their small size, high surface area-to-volume ratio, and low toxicity. However, the need for toxic reductants and organic solvents in their synthesis often limits their desirability for application development. Here, we describe a green strategy to synthesize bismuth nanodots via the redox reactions between bismuth nitrate and d-glucose, in the presence of poly(vinylpyrrolidone) in the basic aqueous phase.
View Article and Find Full Text PDFHerein we present a new strategy to achieve chiral induction and redox switching along the backbone of metallohelicate architectures, wherein a DNA duplex directs the handedness and charge transport properties of a metal-organic assembly more than 60 bonds away (a distance of >10 nm). The quantitative and site-specific binding of copper(i) ions to DNA-templated coordination sites imparts enhanced thermodynamic stability to the assembly, while the DNA duplex transfers its natural right-handed helicity to the proximal and distal metal centers of the helicates. When copper(ii) ions are employed instead of copper(i) ions, spontaneous DNA-mediated reduction occurs, which we propose is followed by a slower change in coordination environment (from pentacoordinate CuII to tetrahedral CuI) to generate copper(i) helicates.
View Article and Find Full Text PDFThis study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample.
View Article and Find Full Text PDFNitrogen-containing heterocycles are fundamentally important to the function of pharmaceuticals, agrochemicals and materials. Herein, we report a bio-inspired approach to the synthesis of oxindoles, which couples the energetic requirements of dehydrogenative C-N bond formation to the reduction of molecular oxygen (O). Our method is inspired by the biosynthesis of melanin pigments (melanogenesis), but diverges from the biosynthetic polymerization.
View Article and Find Full Text PDFControlling product selectivity during the catalytic aerobic oxidation of phenols remains a significant challenge that hinders reaction development. This work provides a mechanistic picture of a Cu-catalyzed, aerobic functionalization of phenols that is selective for phenoxy-coupled ortho-quinones. We show that the immediate product of the reaction is a Cu(II)-semiquinone radical complex and reveal that ortho-oxygenation precedes oxidative coupling.
View Article and Find Full Text PDFThe reaction between p-nitrosonitrobenzene and the tetramethylpropylenediamine-copper(i) complex yields a dinuclear complex that is structurally and electronically similar to side-on peroxo species known in Cu/O2 chemistry. The complex reacts with di-tert-butylphenolate via nitrene transfer, as observed through an intermediate and the aminophenol product obtained upon reductive work-up.
View Article and Find Full Text PDFSubstitution on the aromatic bridge of a nickel(II) salophen complex with electron-donating dimethylamino substituents creates a ligand with three stable, easily and reversibly accessible oxidation states. The one-electron-oxidized product is characterized as a nickel(II) radical complex with the radical bore by the central substituted aromatic ring, in contrast to other nickel(II) salen or salophen complexes that oxidize on the phenolate moieties. The doubly oxidized product, a singlet species, is best described as having an iminobenzoquinone bridge with a vinylogous distribution of bond lengths between the dimethylamino substituents.
View Article and Find Full Text PDFCharge-assisted hydrogen bond-directed self-assembly of a zwitterionic quinonemonoimine was investigated at the liquid/solid interface using scanning tunnelling microscopy. Factors governing morphology, chirality and multilayer formation are discussed, presenting an important foundation for understanding the properties of a large family of related molecules with interesting potential in supramolecular design.
View Article and Find Full Text PDFThe reaction of nitrosobenzene with copper(I) complexes of a tetradentate ligand led to two novel species that are best described as copper(II) complexes of an O-bonded nitrosobenzyl radical anion, in either the singlet or the triplet spin-state. Both states were characterized by crystal structures, magnetic measurements and DFT calculations.
View Article and Find Full Text PDFThe reactivity of the imido-Mo(IV) species [(eta(5)-Cp)(2)Mo(N(t)Bu)], 1, towards the iodine-based oxidant PhIO was investigated and yielded the micro-oxodimolybdenum(V) dimer [{(eta(5)-Cp)(eta(1)-Cp)Mo(N(t)Bu)}(2)O], 2. X-Ray crystallography and (1)H-NMR of 2 indicate slipping of one of the eta(5)-Cp ring on each Mo center to eta(1)-Cp as the result of the coordination of the oxygen atom. DFT investigation of the OAT reaction to complex 1 revealed a transient Mo(IV)-oxo species as the most likely intermediate.
View Article and Find Full Text PDF