This paper reports the first telemetric ureteral stent compatible with common placement procedure, enabling wireless sensing and detection of ureteral obstruction and resultant kidney swelling known as hydronephrosis at an early stage. This sensor-integrated "intelligent" ureteral stent is prototyped via the design and fabrication approaches that raise the practicality of the device and tested in a harvested swine kidney-ureter model ex vivo. Leveraging a polymeric double-J stent and micro-electro-mechanical systems technology, the intelligent stent is built by embedding micro pressure sensors and a radiofrequency antenna, forming a resonant circuit that enables wireless kidney pressure monitoring in an operating frequency of 40-50 MHz.
View Article and Find Full Text PDFWhile millions of ureteral stents are placed in patients with urinary tract issues around the world every year, hydronephrosis still poses great danger to these patients as a common complication. In the present work, an intelligent double-J ureteral stent equipped with a micro pressure sensor and antenna circuitry is investigated and prototyped toward enabling continuous wireless monitoring of kidney pressure to detect a ureteral obstruction and the resultant hydronephrosis via the indwelling stent. This electromechanically functionalized "intelligent" ureteral stent acts as a radiofrequency resonator with a pressure-sensitive resonant frequency that can be interrogated using an external antenna to track the local pressure.
View Article and Find Full Text PDFPiezoelectric nanogenerators (PENGs) provide a viable solution to convert the mechanical energy generated by body movement to electricity. One-dimensional yarns offer a platform for flexible wearable textile PENGs, which can conform to body for comfort and efficient energy harvesting. In this context, we report a flexible piezoelectric yarn, assembled by one-step cocentric deposition of cesium lead halide perovskite decorated polyvinylidene fluoride (PVDF) nanofibers, on a stainless-steel yarn.
View Article and Find Full Text PDF