Publications by authors named "Mohammad Reza Tohidkia"

Melanoma is defined as the most aggressive and deadly form of skin cancer. The treatment of melanoma depends on the disease stage, tumor location, and extent of its spread from its point of origin. Melanoma treatment has made significant advances, notably in the context of targeted and immunotherapies.

View Article and Find Full Text PDF

Angiogenesis, as a tumor hallmark, plays an important role in the growth and development of the tumor vasculature system. There is a huge amount of evidence suggesting that the vascular endothelial growth factor receptor (VEGFR-2)/VEGF-A axis is one of the main contributors to tumor angiogenesis and metastasis. Thus, inhibition of the VEGFR-2 signaling pathway by anti-VEGFR-2 mAb can retard tumor growth.

View Article and Find Full Text PDF

In this study, a surface plasmon resonance biosensor using angular interrogation based on a black phosphorene (BP) and graphene (G) heterostructure as two-dimensional materials are designed to enhance the sensitivity of conventional biosensors. The proposed structure is composed of eight layers: FK51A coupling prism, silver (Ag) thin film as the plasmonic metal, gold (Au) nanolayer in a protective role, BP nanosheets as an evanescent field enhancer, G monolayer as an immobilization process facilitator, DNA aptamer as biorecognition element, and phosphate buffered saline as a running buffer and sensing medium. To evaluate the performance of the proposed biosensor, analytical parameters such as minimum reflectivity ( ), sensitivity, as well as the full width at half-maximum (FWHM), detection accuracy (DA), and quality factor (QF) are systematically assessed by the use of the transfer matrix method analytically and the finite-difference time-domain method numerically, to validate each other.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is a remarkable cytokine that plays an important role in regulating vascular formation during the angiogenesis process. Therefore, real-time detection and quantification of VEGF is essential for clinical diagnosis and treatment due to its overexpression in various tumors. Among various sensing strategies, the aptamer-based sensors in combination with biological molecules improve the detection ability VEGFs.

View Article and Find Full Text PDF

Cell therapy has reached significant milestones in various life-threatening diseases, including cancer. Cell therapy using fluorescent and radiolabeled chimeric antigen receptor (CAR)-T cell is a successful strategy for diagnosing or treating malignancies. Since cell therapy approaches have different results in cancers, the success of hematological cancers has yet to transfer to solid tumor therapy, leading to more casualties.

View Article and Find Full Text PDF

The tumor microenvironment (TME) play critical roles in tumor survival, progression, and metastasis and can be considered potential targets for molecular imaging of cancer. The targeting agents for imaging of TME components (e.g.

View Article and Find Full Text PDF

Production of functional recombinant antibody fragments in the periplasm of is a prerequisite step to achieve sufficient reagent for preclinical studies. Thus, the cost-effective and lab-scale production of antibody fragments demands the optimization of culture conditions. The culture conditions such as temperature, optical density (OD) at induction, induction time, and IPTG concentration were investigated to optimize the functional expression of a phage-derived scFv molecule using a design of experiment (DoE).

View Article and Find Full Text PDF

Breast cancer (BC) has different clinical manifestations due to its diverse mechanism of action that has created many challenges to choosing appropriate treatment. Recent findings of the biology of breast cancer including the mechanisms of survival and metastasis, understanding the effective signaling pathways in tumor formation and modeling of cancer cell responses to the therapeutic approaches provided significant advances in BC treatment. In this regard, the use of phototherapy-based approaches such as photothermal therapy (PTT) would be an encouraging alternative for tumor suppression through activating autophagy or suppressing cell signaling that influences the cell cycle to induce cell death.

View Article and Find Full Text PDF

Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) as biological macromolecules have been remarked the large and growing pipline of the pharmaceutical market and also the most promising tool in modern medicine for cancer therapy. These therapeutic entities, which consist of whole mAbs, armed mAbs (i.e.

View Article and Find Full Text PDF

The current study intended to evaluate two types of biorecognition element (BRE), namely recombinant antibody fragments and M13 bacteriophage-displayed antibody fragments, where protein L and electrostatic interactions were used to respectively conjugated antibodies and bacteriophages on AuNPs. The functionalization process was examined by DLS to monitor the changes in the size and zeta potential. The formation of the BRE-G17-Gly immunological complexes was manifested by aggregation (confirmed by FE-SEM) and color change from red to dark blue visible to the naked eye.

View Article and Find Full Text PDF

Nowadays, the targeted imaging probe and drug delivery systems are the novel breakthrough area in the nanomedicine and treatment of various diseases. Conjugation of monoclonal antibodies and their fragments on nanoparticles (NPs) have a remarkable impact on personalized medicine, such that it provides specific internalization and accumulation in the tumor microenvironment. Targeted imaging and early detection of cancer is presumably the strong participant to a diminution in mortality and recurrence of cancer disease that will be the next generation of the imaging device in clinical application.

View Article and Find Full Text PDF

PAMAM dendrimers (PAMs) are a group of polymeric macromolecules with distinctive physicochemical features, which can make them multifunctional theranostic nanoparticles (NPs). This study was designed to examine the impact of mucin-1 aptamer-conjugated NPs which were engineered using PAM for image-guided delivery of gefitinib (GEF) in the breast cancer cells/tumor. For this, PAMAM was conjugated with diethylenetriaminepentaacetic acid (DTPA) and modified with PEG2000 to prepare a multi-functionalized NPs.

View Article and Find Full Text PDF

In this research, four novel and sensitive immunosensors for electrochemical determination of G17-Gly were designed based on signal amplification and tailor-made recombinant antibody technology. Anti-G17-Gly antibody fragments (i.e.

View Article and Find Full Text PDF

Single-chain variable fragments (scFvs) have gained increased attention among researchers in both academic and industrial fields owing to simple production in E. coli. The E.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are a swiftly growing class of targeted therapeutics for malignancies. After their first advent, the antibody (Ab) engineering trail has shown an evolutionary trajectory - from the rodent-derived Abs to the chimeric, humanised and fully human Abs with higher efficacy and lower/no immunotoxicity. Despite possessing great clinical potentials, several reports have highlighted that monospecific mAbs, even with high-affinity, often fail to induce sufficient immunologic responses.

View Article and Find Full Text PDF

Generation of antibodies which potentially discriminate between malignant and healthy cells is an important prerequisite for early diagnosis and treatment of gastric cancer (GC). Comparative analysis of cell surface protein landscape will provide an experimental basis for biomarker discovery, which is essential for targeted molecular therapies. This study aimed to isolate phage-displayed antibody fragments recognizing cell surface proteins, which were differently expressed between two closely related GC cell lines, namely AGS and MKN-45.

View Article and Find Full Text PDF

Glycine-extended gastrin 17 (G17-Gly), a dominant processing intermediate of gastrin gene, has been implicated in the development or maintenance of colorectal cancers (CRCs). Hence, neutralizing G17-Gly activity by antibody entities can provide a potential therapeutic strategy in the patients with CRCs. To this end, we isolated fully human antibody fragments from a phage antibody library through biopanning against different epitopes of G17-Gly in order to obtain the highest possible antibody diversity.

View Article and Find Full Text PDF

Infection with Helicobacter pylori may result in the emergence of gastric adenocarcinoma. Among various toxins assisting pathogenesis of H. pylori, the vacuolating cytotoxin A (VacA) is one of the most potent toxins known as the major cause of the peptic ulcer and gastric adenocarcinoma.

View Article and Find Full Text PDF

In this effort, we provided comparative study on optimization of transfection conditions for AGS human gastric cancer cell line using two commercial non-liposomal cationic lipids. Using reporter vector pEGFP-N1, transfection efficiency of Attractene™ and X-tremeGENE HP™ transfection reagents in terms of cell densities and DNA/reagent ratios was determined in AGS cells by flow cytometry and fluorescence microscopy. In addition, influence of transfection reagents on direct cytotoxicity and cell viability was respectively, measured using lactate dehydrogenase (LDH) leakage and MTT assays.

View Article and Find Full Text PDF

In the recent decades, a number of studies have highlighted the importance of in the initiation and development of peptic ulcer and gastric cancer. Some potential virulence factors (e.g.

View Article and Find Full Text PDF

Nowadays, phage display libraries are used as robust tools for discovery and evolution of peptide/protein based drugs as well as targeting molecules, in particular monoclonal antibodies (mAbs) and its fragments (i.e., scFvs, Fabs, or bivalent F(ab')₂).

View Article and Find Full Text PDF