Publications by authors named "Mohammad Reza Pourkarimi"

Thermal non-classical correlations quantified by concurrence entanglement, local quantum uncertainty, and quantum coherence in a four-qubit square chain are exactly examined. The influences of the Hamiltonian parameters on the mentioned pairwise quantum criteria and fidelity of teleportation are studied, and the most interesting findings are discussed in detail. It is found that the tuning anisotropy results in enhancing the thermal quantum correlations and coherence as well as average fidelity until achieving maximum values.

View Article and Find Full Text PDF

The uncertainty principle is known as a foundational element of quantum theory, providing a striking lower bound to quantify our prediction for the measured result of two incompatible observables. In this work, we study the thermal evolution of the entropic uncertainty bound in the presence of quantum memory for an inhomogeneous four-qubit spin-star system that is in the thermal regime. Intriguingly, our results show that the entropic uncertainty bound can be controlled and suppressed by adjusting the inhomogeneity parameter of the system.

View Article and Find Full Text PDF

We present a new quantum-memory-assisted entropic uncertainty relation for multipartite systems which shows the uncertainty principle of quantum mechanics. Notably, our results recover some well-known entropic uncertainty relations for two arbitrary incompatible observables that demonstrate the uncertainties about the results of two measurements. This uncertainty relation might play a critical role in the foundations of quantum theory.

View Article and Find Full Text PDF

Controlled quantum teleportation involves a third party as a controller for the teleportation of state. Here, we present the novel protocols for controlling teleportation of the arbitrary two-qubit and three-qubit states through five-qubit and seven-qubit cluster states respectively. In these schemes, Alice sends the arbitrary qubit states to the remote receiver Bob through the cluster states as quantum channels under the control of Charlie.

View Article and Find Full Text PDF